执行引擎属于JVM的下层,里面包括: 解释器、及时编译器、垃圾回收器
执行引擎是Java虚拟机核心的组成部分之一。“虚拟机”是一个相对于“物理机”的概念,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器、缓存、指令集和操作系统层面上的,而虚拟机的执行引擎则是由软件自行实现的,因此可以不受物理条件制约地定制指令集与执行引擎的结构体系,能够执行那些不被硬件直接支持的指令集格式。
JVM的主要任务是负责装载字节码到其内部,但字节码并不能够直接运行在操作系统之上,因为字节码指令并非等价于本地机器指令,它内部包含的仅仅只是一些能够被JVM所识别的字节码指令、符号表,以及其他辅助信息。
那么,如果想要让一个Java程序运行起来,执行引擎(Execution Engine)的任务就是将字节码指令解释/编译为对应平台上的本地机器指令才可以。 简单来说,JVM中的执行引擎充当了将高级语言翻译为机器语言的译者。
执行引擎的工作流程:
从外观上来看,所有的Java虚拟机的执行引擎输入,输出都是一致的:输入的是字节码二进制流,处理过程是字节码解析执行的等效过程,输出的是执行过程。
大部分的程序代码转换成物理机的目标代码或虚拟机能执行的指令集之前,都需要经过图中的各个步骤:
Java代码编译是由Java源码编译器来完成,流程图如下所示:
Java字节码的执行是由JVM执行引擎来完成,流程图如下所示:
中间代码: 由于源程序与目标程序的逻辑结构往往差别很大,想要一次翻译到位很困难,而用语法制导翻译往往会生成繁琐低效的目标代码,因此必须采用一些中间代码,将原程序先翻译成中间代码形式,以利于进行与机器无关的优化处理。使用中间代码有助于提高编译程序的可移植性。
解释器和编译器:
解释器(Interpreter): 当Java虚拟机启动时会根据预定义的规范 对字节码采用逐行解释的方式执行, 将每条字节码文件中的内容“翻译”为对应平台的本地机器指令执行。
JIT编译器(Just In Time Compiler): 虚拟机将源代码直接编译成和本地机器平台相关的机器语言。
半编译半解释型语言: JDK1.0时代,将Java语言定位为“解释执行”还是比较准确的。再后来,Java也发展出可以直接生成本地代码的编译器。现在JVM在执行Java代码的时候,通常都会将解释执行与编译执行二者结合起来进行。
翻译成本地代码后,就可以做一个缓存操作,存储在方法区中
机器码:
指令:
指令集:
汇编语言:
高级语言:
C、C++源程序执行过程:
字节码:
JVM设计者们的初衷仅仅只是单纯地为了满足Java程序实现跨平台特性,因此避免采用静态编译的方式直接生成本地机器指令,从而诞生了实现解释器在运行时采用逐行解释字节码执行程序的想法。
解释器真正意义上所承担的角色就是一个运行时“翻译者”,将字节码文件中的内容“翻译”为对应平台的本地机器指令执行。当一条字节码指令被解释执行完成后,接着再根据程序计数器中记录的下一条需要被执行的字节码指令执行解释操作。
解释器分类:
在Java的发展历史里,一共有两套解释执行器,即古老的字节码解释器、现在普遍使用的模板解释器。
在HotSpot VM中,解释器主要由Interpreter模块和Code模块构成:
由于解释器在设计和实现上非常简单,因此除了Java语言之外,还有许多高级语言同样也是基于解释器执行的,比如Python、Perl、Ruby等。但是在今天,基于解释器执行已经沦落为低效的代名词。
为了解决这个问题,JVM平台支持一种叫作即时编译的技术。即时编译的目的是避免函数被解释执行,而是将整个函数体编译成为机器码,每次函数执行时,只执行编译后的机器码即可,这种方式可以使执行效率大幅度提升。
Java代码的执行分类:
HotSpot VM是目前市面上高性能虚拟机的代表作之一。它采用解释器与即时编译器并存的架构。在Java虚拟机运行时,解释器和即时编译器能够相互协作,各自取长补短,尽力去选择最合适的方式来权衡编译本地代码的时间和直接解释执行代码的时间。
问题来了:
有些开发人员会感觉到诧异,既然HotSpot VM中已经内置JIT编译器了,那么为什么还需要再使用解释器来“拖累”程序的执行性能呢?比如JRockit VM内部就不包含解释器,字节码全部都依靠即时编译器编译后执行。
JRockit虚拟机是砍掉了解释器,也就是只采及时编译器。那是因为呢JRockit只部署在服务器上,一般已经有时间让他进行指令编译的过程了,对于响应来说要求不高,等及时编译器的编译完成后,就会提供更好的性能
首先明确:
当程序启动后,解释器可以马上发挥作用,省去编译的时间,立即执行。
编译器要想发挥作用,把代码编译成本地代码,需要一定的执行时间。但编译为本地代码后,执行效率高。
所以:
尽管JRockit VM中程序的执行性能会非常高效,但程序在启动时必然需要花费更长的时间来进行编译。对于服务端应用来说,启动时间并非是关注重点,但对于那些看中启动时间的应用场景而言,或许就需要采用解释器与即时编译器并存的架构来换取一个平衡点。
在此模式下,当Java虚拟器启动时,解释器可以首先发挥作用,而不必等待即时编译器全部编译完成后再执行,这样可以省去许多不必要的编译时间。随着时间的推移,编译器发挥作用,把越来越多的代码编译成本地代码,获得更高的执行效率。
同时,解释执行在编译器进行激进优化不成立的时候,作为编译器的“逃生门”。
HotSpot JVM执行方式:
当虚拟机启动的时候,解释器可以首先发挥作用,而不必等待即时编译器全部编译完成再执行,这样可以省去许多不必要的编译时间。并且随着程序运行时间的推移,即时编译器逐渐发挥作用,根据热点探测功能,将有价值的字节码编译为本地机器指令,以换取更高的程序执行效率。
不同的编译器:
前端编译器: Sun的Javac、Eclipse JDT中的增量式编译器(ECJ)。
JIT编译器: HotSpot VM的C1、C2编译器。
AOT 编译器: GNU Compiler for the Java(GCJ)、Excelsior JET。
Graal编译器:
自JDK10起,HotSpot又加入了一个全新的及时编译器:Graal编译器,编译效果短短几年时间就追评了G2编译器,未来可期。
目前,带着实验状态标签,需要使用开关参数去激活才能使用:-XX:+UnlockExperimentalvMOptions -XX:+UseJVMCICompiler
AOT编译器:
jdk9引入了AOT编译器(静态提前编译器,Ahead of Time Compiler),所谓AOT编译,是与即时编译相对立的一个概念。我们知道,即时编译指的是在程序的运行过程中,将字节码转换为可在硬件上直接运行的机器码,并部署至托管环境中的过程。而AOT编译指的则是,在程序运行之前,便将字节码转换为机器码的过程。
- Java 9引入了实验性AOT编译工具aotc。它借助了Graal编译器,将所输入的Java类文件转换为机器码,并存放至生成的动态共享库之中。>.java -> .class -> (使用jaotc) -> .so
- 好处: Java虚拟机加载已经预编译成二进制库,可以直接执行。不必等待及时编译器的预热,减少Java应用给人带来“第一次运行慢” 的不良体验
- 缺点: 破坏了 java “ 一次编译,到处运行”,必须为每个不同的硬件,OS编译对应的发行包。降低了Java链接过程的动态性,加载的代码在编译器就必须全部已知。还需要继续优化中,最初只支持Linux X64 java base
热点探测技术:
方法调用计数器:
热点衰减:
回边计数器:
它的作用是统计一个方法中循环体代码执行的次数,在字节码中遇到控制流向后跳转的指令称为“回边”(Back Edge)。显然,建立回边计数器统计的目的就是为了触发OSR编译。
HotSpotVM 可以设置程序执行方法:
缺省情况下HotSpot VM是采用解释器与即时编译器并存的架构,当然开发人员可以根据具体的应用场景,通过命令显式地为Java虚拟机指定在运行时到底是完全采用解释器执行,还是完全采用即时编译器执行。如下所示:
HotSpotVM中 JIT 分类:
JIT的编译器还分为了两种,分别是C1和C2,在HotSpot VM中内嵌有两个JIT编译器,分别为Client Compiler和Server Compiler,但大多数情况下我们简称为C1编译器 和 C2编译器。开发人员可以通过如下命令显式指定Java虚拟机在运行时到底使用哪一种即时编译器,如下所示:
C1 和 C2编译器不同的优化策略:
在不同的编译器上有不同的优化策略,C1编译器上主要有方法内联,去虚拟化、元余消除。
C2的优化主要是在全局层面,逃逸分析是优化的基础。基于逃逸分析在C2上有如下几种优化:
分层编译(Tiered Compilation)策略: 程序解释执行(不开启性能监控)可以触发C1编译,将字节码编译成机器码,可以进行简单优化,也可以加上性能监控,C2编译会根据性能监控信息进行激进优化。
不过在Java7版本之后,一旦开发人员在程序中显式指定命令“-server"时,默认将会开启分层编译策略,由C1编译器和C2编译器相互协作共同来执行编译任务。
一般来讲,JIT编译出来的机器码性能比解释器高,C2编译器启动时长比C1慢,系统稳定执行以后,C2编译器执行速度远快于C1编译器。