- Docker快速构建Hive测试环境
静谧星光
dockerhive容器编程
Docker是一种流行的容器化平台,可以帮助我们快速构建和管理应用程序的环境。在本文中,我们将学习如何使用Docker快速构建Hive测试环境。Hive是一个基于Hadoop的数据仓库基础设施,它提供了一种类似于SQL的查询语言,用于分析和处理大规模数据集。步骤1:安装Docker和DockerCompose首先,我们需要安装Docker和DockerCompose。您可以根据您的操作系统类型,从
- HDFS 伪分布模式搭建与使用全攻略(适合初学者 & 开发测试环境)
huihui450
hdfshadoop大数据
HDFS(HadoopDistributedFileSystem)作为Hadoop生态系统的核心组件,广泛应用于海量数据的分布式存储场景。对于开发者而言,伪分布模式提供了一种低成本、高还原度的学习与测试方式。本文将详细介绍如何在本地搭建并使用HDFS的伪分布模式,包括环境准备、配置过程、常用命令及常见问题排查,帮助你快速入门Hadoop分布式文件系统的实践操作。一、什么是伪分布模式?Hadoop有
- YARN container cpu超核如何解决
fzip
YARN超核
在ApacheHadoopYARN中,ContainerCPU超核(即Container使用的CPU资源超过分配量)是一个常见问题,可能导致集群性能下降或不稳定。以下是解决该问题的详细步骤:1.问题诊断1.1确认超核现象查看YARNWebUI:访问http://:8088,检查Container的CPU使用率是否持续超过分配的vCore数。检查NodeManager日志:查看/var/log/ha
- Hadoop-Mapreduce入门
Hadoop-Mapreduce入门MapReduce介绍mapreduce设计MapReduce编程规范入门案例WordCountMapReduce介绍MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。知识。Map负责“分”,把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Redu
- Hadoop MapReduce入门
且行且安~
数据分析进阶之路Linux命令hadoopMapReduce入门
入门简介计算过程分为两个阶段Map和ReduceMap阶段并行处理输入数据Reduce阶段对Map结果进行汇总针对python语言来说:map函数或者reduce函数来说,输出的数据格式为元组tuple一个简单的MapReduce程序只需要指定map()reduce()input()output()剩下的由框架完成。Linux常见命令:-读取文件(文本文件,在Windows下使用记事本打开的文件)
- Hadoop MapReduce 入门
一、Hadoop3.0.4环境准备1.环境要求Java8(Hadoop3.0.4不支持Java11+)单节点或多节点Linux系统(推荐Ubuntu18.04+)至少4GB内存(建议8GB+)50GB以上磁盘空间2.安装Java#安装Java8sudoapt-getinstallopenjdk-8-jdk#验证安装java-version3.下载与安装Hadoop3.0.4#下载Hadoop3.0
- 管理大数据存储的十大技巧
weixin_34238633
大数据数据库运维
在1990年,每一台应用服务器都倾向拥有直连式系统(DAS)。SAN的构建则是为了更大的规模和更高的效率提供共享的池存储。Hadoop已经逆转了这一趋势回归DAS。每一个Hadoop集群都拥有自身的——虽然是横向扩展型——直连式存储,这有助于Hadoop管理数据本地化,但也放弃了共享存储的规模和效率。如果你拥有多个实例或Hadoop发行版,那么你就将得到多个横向扩展的存储集群。而我们所遇到的最大挑
- MapReduce数据处理过程2万字保姆级教程
大模型大数据攻城狮
mapreduce大数据yarncdhhadoop大数据面试shuffle
目录1.MapReduce的核心思想:分而治之的艺术2.HadoopMapReduce的架构:从宏观到微观3.WordCount实例:从代码到执行的完整旅程4.源码剖析:Job.submit的魔法5.Map任务的执行:从分片到键值对6.Shuffle阶段:MapReduce的幕后英雄7.Reduce任务的执行:从数据聚合到最终输出8.Combiner的魔法:提前聚合的性能利器9.Partition
- Hadoop核心组件最全介绍
Cachel wood
大数据开发hadoop大数据分布式spark数据库计算机网络
文章目录一、Hadoop核心组件1.HDFS(HadoopDistributedFileSystem)2.YARN(YetAnotherResourceNegotiator)3.MapReduce二、数据存储与管理1.HBase2.Hive3.HCatalog4.Phoenix三、数据处理与计算1.Spark2.Flink3.Tez4.Storm5.Presto6.Impala四、资源调度与集群管
- 数据仓库技术及应用(Hive 产生背景与架构设计,存储模型与数据类型)
娟恋无暇
数据仓库笔记hive
1.Hive产生背景传统Hadoop架构存在的一些问题:MapReduce编程必须掌握Java,门槛较高传统数据库开发、DBA、运维人员学习门槛高HDFS上没有Schema的概念,仅仅是一个纯文本文件Hive的产生:为了让用户从一个现有数据基础架构转移到Hadoop上现有数据基础架构大多基于关系型数据库和SQL查询Facebook诞生了Hive2.Hive是什么官网:https://hive.ap
- 缺少关键的 MapReduce 框架文件
计算圆周率时提醒Hadoop集群缺少关键的MapReduce框架文件mr-framework.tar.gz在http://master:7180/cmf/services/4/status里直接安装再次运行代码:
- 大数据 ETL 工具 Sqoop 深度解析与实战指南
一、Sqoop核心理论与应用场景1.1设计思想与技术定位Sqoop是Apache旗下的开源数据传输工具,核心设计基于MapReduce分布式计算框架,通过并行化的Map任务实现高效的数据批量迁移。其特点包括:批处理特性:基于MapReduce作业实现导入/导出,适合大规模离线数据迁移,不支持实时数据同步。异构数据源连接:支持关系型数据库(如MySQL、Oracle)与Hadoop生态(HDFS、H
- 安装Hadoop集群&入门&源码编译
只年
大数据Hadoophadoop大数据分布式
安装Hadoop集群完全分布式先决条件准备三台机器NameStaticIPDESCbigdata102192.168.1.102DataNode、NodeManager、NameNodebigdata103192.168.1.103DataNode、NodeManager、ResourceManagerbigdata104192.168.1.104DataNode、NodeManager、Seco
- Hadoop之HDFS
只年
大数据HadoopHDFShadoophdfs大数据
Hadoop之HDFSHDFS的Shell操作启动Hadoop集群(方便后续测试)[atguigu@hadoop102~]$sbin/start-dfs.sh[atguigu@hadoop102~]$sbin/start-yarn.sh-help:输出这个命令参数[atguigu@hadoop102~]$hadoopfs-helprm-ls:显示目录信息[atguigu@hadoop102~]$h
- 安装Python3.12报错:HTTP 429 TOO MANY REQUESTS for url <https://mirrors.ustc.edu.cn/anaconda/pkgs/free/li
安装Python3.12报错(base)[xxx@hadoop104python_shell]$condacreate--namepythonThirteenpython=3.12报错如下:Retrievingnotices:…working…ERRORconda.notices.fetch:get_channel_notice_response(63):Requesterrorforchanne
- 大数据分析技术的学习路径,不是绝对的,仅供参考
水云桐程序员
学习大数据数据分析学习方法
阶段一:基础筑基(1-3个月)1.编程语言:Python:掌握基础语法、数据结构、流程控制、函数、面向对象编程、常用库(NumPy,Pandas)。SQL:精通SELECT语句(过滤、排序、分组、聚合、连接)、DDL/DML基础。理解关系型数据库概念(表、主键、外键、索引)。MySQL或PostgreSQL是很好的起点。Java/Scala:深入理解Hadoop/Spark等框架会更有优势。初学者
- 头歌作业-HBase 开发:使用Java操作HBase
http_lizi
hbasejavapython
第一关packagestep1;importjava.io.IOException;importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.hbase.HBaseConfiguration;importorg.apache.hadoop.hbase.HColumnDescriptor;importorg.apache.h
- HDFS中fsimage和edits究竟是什么
清平乐的技术博客
大数据运维hdfshadoop大数据
fsimage和edits是HadoopHDFS(Hadoop分布式文件系统)中的两个关键组件,用于存储文件系统的元数据,以确保文件系统的持久性和一致性。在理解它们的作用之前,我们先了解一下HDFS的基本工作原理。HDFS采用了一种分布式文件系统的架构,其中数据被划分成块并分布在不同的数据节点上,而元数据(文件和目录的信息)则由单独的组件进行管理。元数据的持久性和一致性非常重要,因为文件系统的正确
- spark处理kafka的用户行为数据写入hive
月光一族吖
sparkkafkahive
在CentOS上部署Hadoop(Hadoop3.4.1)和Hive(Hive3.1.2)的详细步骤说明。这份指南面向单机安装(伪集群模式),如果需要搭建真正的多节点集群,各节点间的网络互访、SSH免密登录以及配置同步需进一步调整。注意:本指南假设你已拥有root权限或者具有sudo权限,并且系统连接Internet(用于下载安装包)。步骤中的版本号可根据实际需要进行更改。一、环境准备更新系统软件
- 【Hadoop】Hadoop车辆数据存储
db_hjx_2066
javahadoop
Hadoop车辆数据存储本作业旨在实现将车辆数据按天存储到Hadoop分布式文件系统(HDFS)中,并根据数据文件大小分割成多个文件进行存储。数据格式为JSON。作业要求车辆数据按天存储,每天的数据存储在一个文件夹下。数据文件以JSON格式存储。如果数据文件大于100M,则另起一个文件存储。每天的数据总量不少于300M。实现方法1.代码说明以下是用Java编写的实现代码:1.导入类//导入必要的类
- 计算机毕业设计之基于Hadoop的公共自行车数据分布式存储与计算
如今,在科学技术飞速发展的情况下,信息化的时代也已因为计算机的出现而来临,信息化也已经影响到了社会上的各个方面。它可以为人们提供许多便利之处,可以大大提高人们的工作效率。随着计算机技术的发展的普及,各个领域也都体会到其强大的数据处理能力,这也成为各行各业不可或缺的工具。所以计算机技术被广泛应用于信息管理系统和数据处理等方面。通过它可以大大减少相关的工作处理步骤,也可以提高信息和数据的安全性。本文对
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- HDFS与HBase有什么关系?
lucky_syq
hdfshbasehadoop
1、HDFS文件存储系统和HBase分布式数据库HDFS是Hadoop分布式文件系统。HBase的数据通常存储在HDFS上。HDFS为HBase提供了高可靠性的底层存储支持。Hbase是Hadoopdatabase,即Hadoop数据库。它是一个适合于非结构化数据存储的数据库,HBase基于列的而不是基于行的模式。
- 大数据基础知识-Hadoop、HBase、Hive一篇搞定
原来是猪猪呀
hadoop大数据分布式
HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构,其核心设计包括分布式文件系统(HDFS)和MapReduce编程模型;Hadoop是一个开源的分布式计算框架,旨在帮助用户在不了解分布式底层细节的情况下,开发分布式程序。它通过利用集群的力量,提供高速运算和存储能力,特别适合处理超大数据集的应用程序。Hadoop生态圈Hadoop生态圈是一个由多个基于Hadoop开发的相
- Hadoop、HDFS、Hive、Hbase区别及联系
静心观复
大数据hadoophdfshive
Hadoop、HDFS、Hive和HBase是大数据生态系统中的关键组件,它们都是由Apache软件基金会管理的开源项目。下面将深入解析它们之间的区别和联系。HadoopHadoop是一个开源的分布式计算框架,它允许用户在普通硬件上构建可靠、可伸缩的分布式系统。Hadoop通常指的是整个生态系统,包括HadoopCommon(共享库和工具)、HadoopDistributedFileSystem(
- Hadoop入门案例WordCount
码喵喵
hadoopmapreduce大数据
wordcount可以说是hadoop的入门案例,也是基础案例主要体现思想就是mapreduce核心思想原始文件为hadoop.txt,内容如下:hello,javahello,java,linux,hadoophadoop,java,linuxhello,java,linuxlinux,c,javac,php,java在整个文件中单词所出现的次数Hadoop思维:Mapreduce-----》M
- Hadoop入门案例
'Wu'
学习日常大数据hadoophdfs大数据
Hadoop的运行流程:客户端向HDFS请求文件存储或使用MapReduce计算。NameNode负责管理整个HDFS系统中的所有数据块和元数据信息;DataNode则实际存储和管理数据块。客户端通过NameNode查找需要访问或处理的文件所在的DataNode,并将操作请求发送到相应的DataNode上。当客户端上传一个新文件时(比如输入某些日志),它会被分成固定大小(默认64MB)并进行数据复
- 【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
MapReduce是一种适合处理大规模数据的分布式计算框架,其核心思想是将计算任务分解为Map(映射)和Reduce(归约)两个阶段。对文件中的数字进行排序,可以利用MapReduce的特性来实现。要使用MapReduce对文件中的数字进行排序,需要实现一个MapReduce作业,将数字作为键处理,利用Hadoop的默认排序机制对键进行排序。以下是实现步骤和示例代码:文章大纲题目一:有一个文件,每
- 头歌 当HBase遇上MapReduce
敲代码的苦13
头歌hbasemapreduce数据库
头歌当HBase遇上MapReduce第1关:HBase的MapReduce快速入门代码行:packagecom.processdata;importjava.io.IOException;importjava.util.List;importjava.util.Scanner;importorg.apache.hadoop.conf.Configuration;importorg.apache.
- MapReduce01:基本原理和wordCount代码实现
冬至喵喵
大数据mapreduce
本篇文章中,笔者记录了自己对于MapReduce的肤浅理解,参考资料主要包括《大数据Hadoop3.X分布式处理实战》和网络视频课程。下文介绍了MapReduce的基本概念、运行逻辑以及在wordCount代码示例。一、MapReduce概述1.概述google为解决其搜索引擎中的大规模网页数据的并行化处理问题,设计了MapReduce,在发明MapReduce之后首先用其重新改写了搜索引擎中we
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt