张宇1000题高等数学 第一章 函数极限与连续

目录

  • A A A
    • 15.求极限 lim ⁡ x → 0 sin ⁡ x + x 2 sin ⁡ 1 x ( 2 + x 2 ) ln ⁡ ( 1 + x ) \lim\limits_{x\to0}\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{(2+x^2)\ln(1+x)} x0lim(2+x2)ln(1+x)sinx+x2sinx1
  • B B B
    • 3.当 x → 0 + x\to0^+ x0+时,下列无穷小量中,与 x x x同阶的无穷小是(  )
      ( A ) 1 + x − 1 ; (A)\sqrt{1+x}-1; (A)1+x 1;
      ( B ) ln ⁡ ( 1 + x ) − x ; (B)\ln(1+x)-x; (B)ln(1+x)x;
      ( C ) cos ⁡ ( sin ⁡ x ) − 1 ; (C)\cos(\sin x)-1; (C)cos(sinx)1;
      ( D ) x x − 1. (D)x^x-1. (D)xx1.
    • 15.计算下列极限。
      • (5) lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 ; \lim\limits_{x\to\infty}e^{-x}\left(1+\cfrac{1}{x}\right)^{x^2}; xlimex(1+x1)x2;
      • (19) lim ⁡ x → 0 + x x − ( tan ⁡ x ) x x ( 1 + 3 sin ⁡ 2 x − 1 ) . \lim\limits_{x\to0^+}\cfrac{x^x-(\tan x)^x}{x(\sqrt{1+3\sin^2x}-1)}. x0+limx(1+3sin2x 1)xx(tanx)x.
  • C C C
    • 3.记 f ( x ) = 27 x 3 + 5 x 2 − 2 f(x)=27x^3+5x^2-2 f(x)=27x3+5x22的反函数为 f − 1 f^{-1} f1,求极限: lim ⁡ x → ∞ f − 1 ( 27 x ) − f − 1 ( x ) x 3 \lim\limits_{x\to\infty}\cfrac{f^{-1}(27x)-f^{-1}(x)}{\sqrt[3]{x}} xlim3x f1(27x)f1(x)
    • 4.计算下列极限。
      • (2) lim ⁡ x → 0 ∫ 0 x sin ⁡ 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t ; \lim\limits_{x\to0}\displaystyle\int^x_0\cfrac{\sin2t}{\sqrt{4+t^2}\displaystyle\int^x_0(\sqrt{t+1}-1)\mathrm{d}t}; x0lim0x4+t2 0x(t+1 1)dtsin2t;
      • (3) lim ⁡ x → + ∞ ( x 3 + 2 x 2 + 1 3 − x e 1 x ) ; \lim\limits_{x\to+\infty}(\sqrt[3]{x^3+2x^2+1}-xe^{\frac{1}{x}}); x+lim(3x3+2x2+1 xex1);
      • (4) lim ⁡ x → 0 1 + 1 2 x 2 − 1 + x 2 ( cos ⁡ x − e x 2 2 ) sin ⁡ s 2 2 ; \lim\limits_{x\to0}\cfrac{1+\cfrac{1}{2}x^2-\sqrt{1+x^2}}{(\cos x-e^{\frac{x^2}{2}})\sin\cfrac{s^2}{2}}; x0lim(cosxe2x2)sin2s21+21x21+x2 ;
    • 7.设 a ⩾ 5 a\geqslant5 a5且为常数,则 k k k为何值时极限 I = lim ⁡ x → + ∞ [ ( x α + 8 x 4 + 2 ) k − x ] I=\lim\limits_{x\to+\infty}[(x^\alpha+8x^4+2)^k-x] I=x+lim[(xα+8x4+2)kx]存在,并求此极限值。
    • 11.设 f ( x ) = lim ⁡ n → ∞ 1 + ( 2 x ) n + x 2 n n ( x ⩾ 0 ) f(x)=\lim\limits_{n\to\infty}\sqrt[n]{1+(2x)^n+x^{2n}}(x\geqslant0) f(x)=nlimn1+(2x)n+x2n (x0)
      • (1)求函数 f ( x ) f(x) f(x)的表达式;
      • (2)讨论函数 f ( x ) f(x) f(x)的连续性。
  • 写在最后

A A A

15.求极限 lim ⁡ x → 0 sin ⁡ x + x 2 sin ⁡ 1 x ( 2 + x 2 ) ln ⁡ ( 1 + x ) \lim\limits_{x\to0}\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{(2+x^2)\ln(1+x)} x0lim(2+x2)ln(1+x)sinx+x2sinx1


lim ⁡ x → 0 sin ⁡ x + x 2 sin ⁡ 1 x ( 2 + x 2 ) ln ⁡ ( 1 + x ) = lim ⁡ x → 0 1 2 + x 2 ⋅ sin ⁡ x + x 2 sin ⁡ 1 x x = 1 2 lim ⁡ x → 0 ( sin ⁡ x x + x sin ⁡ 1 x ) = 1 2 . \begin{aligned} \lim\limits_{x\to0}\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{(2+x^2)\ln(1+x)}&=\lim\limits_{x\to0}\cfrac{1}{2+x^2}\cdot\cfrac{\sin x+x^2\sin\cfrac{1}{x}}{x}\\ &=\cfrac{1}{2}\lim\limits_{x\to0}\left(\cfrac{\sin x}{x}+x\sin\cfrac{1}{x}\right)=\cfrac{1}{2}. \end{aligned} x0lim(2+x2)ln(1+x)sinx+x2sinx1=x0lim2+x21xsinx+x2sinx1=21x0lim(xsinx+xsinx1)=21.
这道题主要利用了洛必达法则适用条件求解

B B B

3.当 x → 0 + x\to0^+ x0+时,下列无穷小量中,与 x x x同阶的无穷小是(  )
( A ) 1 + x − 1 ; (A)\sqrt{1+x}-1; (A)1+x 1;
( B ) ln ⁡ ( 1 + x ) − x ; (B)\ln(1+x)-x; (B)ln(1+x)x;
( C ) cos ⁡ ( sin ⁡ x ) − 1 ; (C)\cos(\sin x)-1; (C)cos(sinx)1;
( D ) x x − 1. (D)x^x-1. (D)xx1.

  选项 ( A ) (A) (A) 1 + x − 1 ∼ 1 2 x \sqrt{1+x}-1\sim\cfrac{1}{2}x 1+x 121x,是关于 x x x的一阶无穷小。
  选项 ( B ) (B) (B) ln ⁡ ( 1 + x ) − x = [ x − 1 2 x 2 + ο ( x 2 ) ] − x ∼ − 1 2 x 2 \ln(1+x)-x=\left[x-\cfrac{1}{2}x^2+\omicron(x^2)\right]-x\sim-\cfrac{1}{2}x^2 ln(1+x)x=[x21x2+ο(x2)]x21x2,是关于 x x x的二阶无穷小。
  选项 ( C ) (C) (C) cos ⁡ ( sin ⁡ x ) − 1 ∼ − 1 2 sin ⁡ 2 x ∼ − 1 2 x 2 \cos(\sin x)-1\sim-\cfrac{1}{2}\sin^2x\sim-\cfrac{1}{2}x^2 cos(sinx)121sin2x21x2,是关于 x x x的二阶无穷小。
  选项 ( D ) (D) (D) x x − 1 = e x ln ⁡ x − 1 ∼ x ln ⁡ x x^x-1=e^{x\ln x}-1\sim x\ln x xx1=exlnx1xlnx,不是关于 x x x的一阶无穷小。(这道题主要利用了无穷小求解

15.计算下列极限。

(5) lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 ; \lim\limits_{x\to\infty}e^{-x}\left(1+\cfrac{1}{x}\right)^{x^2}; xlimex(1+x1)x2;


lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ e x 2 ln ⁡ ( 1 + 1 x ) − x = e lim ⁡ x → ∞ ln ⁡ ( 1 + 1 x ) − 1 x ( 1 x ) 2 = x = 1 t e lim ⁡ t → 0 ln ⁡ ( 1 + t ) − t t 2 = e lim ⁡ t → 0 1 1 + t − 1 2 t = e − 1 2 . \begin{aligned} \lim\limits_{x\to\infty}e^{-x}\left(1+\cfrac{1}{x}\right)^{x^2}&=\lim\limits_{x\to\infty}e^{x^2\ln\left(1+\frac{1}{x}\right)-x}=e^{\lim\limits_{x\to\infty}\dfrac{\ln\left(1+\frac{1}{x}\right)-\frac{1}{x}}{\left(\frac{1}{x}\right)^2}}\\ &\xlongequal{x=\frac{1}{t}}e^{\lim\limits_{t\to0}\frac{\ln(1+t)-t}{t^2}}=e^{\lim\limits_{t\to0}\frac{\frac{1}{1+t}-1}{2t}}=e^{-\frac{1}{2}}. \end{aligned} xlimex(1+x1)x2=xlimex2ln(1+x1)x=exlim(x1)2ln(1+x1)x1x=t1 et0limt2ln(1+t)t=et0lim2t1+t11=e21.
这道题主要利用了变量代换求解

(19) lim ⁡ x → 0 + x x − ( tan ⁡ x ) x x ( 1 + 3 sin ⁡ 2 x − 1 ) . \lim\limits_{x\to0^+}\cfrac{x^x-(\tan x)^x}{x(\sqrt{1+3\sin^2x}-1)}. x0+limx(1+3sin2x 1)xx(tanx)x.

  因为 lim ⁡ x → 0 + x x = lim ⁡ x → 0 + e x ln ⁡ x = 1 , lim ⁡ x → 0 + e x ln ⁡ tan ⁡ x = 1 \lim\limits_{x\to0^+}x^x=\lim\limits_{x\to0^+}e^{x\ln x}=1,\lim\limits_{x\to0^+}e^{x\ln\tan x}=1 x0+limxx=x0+limexlnx=1,x0+limexlntanx=1。对分母作等价无穷小代换: 1 + 3 sin ⁡ 2 x − 1 ∼ 1 2 ⋅ 3 sin ⁡ 2 x ∼ 3 2 x 2 ( x → 0 + ) \sqrt{1+3\sin^2x}-1\sim\cfrac{1}{2}\cdot3\sin^2x\sim\cfrac{3}{2}x^2(x\to0^+) 1+3sin2x 1213sin2x23x2(x0+),得
原式 = 2 3 lim ⁡ x → 0 + x x − ( tan ⁡ x ) x x 3 = 2 3 lim ⁡ x → 0 + x x [ 1 − ( tan ⁡ x x ) x ] x 3 = − 2 3 lim ⁡ x → 0 + ( tan ⁡ x x ) x − 1 x 3 = − 2 3 lim ⁡ x → 0 + e x ln ⁡ ( tan ⁡ x x ) − 1 x 3 . \begin{aligned} \text{原式}&=\cfrac{2}{3}\lim\limits_{x\to0^+}\cfrac{x^x-(\tan x)^x}{x^3}=\cfrac{2}{3}\lim\limits_{x\to0^+}\cfrac{x^x\left[1-\left(\cfrac{\tan x}{x}\right)^x\right]}{x^3}\\ &=-\cfrac{2}{3}\lim\limits_{x\to0^+}\cfrac{\left(\cfrac{\tan x}{x}\right)^x-1}{x^3}=-\cfrac{2}{3}\lim\limits_{x\to0^+}\cfrac{e^{x\ln\left(\frac{\tan x}{x}\right)}-1}{x^3}. \end{aligned} 原式=32x0+limx3xx(tanx)x=32x0+limx3xx[1(xtanx)x]=32x0+limx3(xtanx)x1=32x0+limx3exln(xtanx)1.
  对分子作等价无穷小代换:当 x → 0 + x\to0^+ x0+时,有
e x ln ⁡ ( tan ⁡ x x ) − 1 ∼ x ln ⁡ ( tan ⁡ x x ) = x ln ⁡ [ 1 + ( tan ⁡ x x − 1 ) ] ∼ x ( tan ⁡ x x − 1 ) = tan ⁡ x − x , 原式 = − 2 3 lim ⁡ x → 0 + tan ⁡ x − x x 3 = − 2 3 lim ⁡ x → 0 + sec ⁡ 2 x − 1 3 x 2 = − 4 9 lim ⁡ x → 0 + ( tan ⁡ x x ) 2 = − 2 9 . e^{x\ln\left(\frac{\tan x}{x}\right)}-1\sim x\ln\left(\cfrac{\tan x}{x}\right)=x\ln\left[1+\left(\frac{\tan x}{x}-1\right)\right]\sim x\left(\frac{\tan x}{x}-1\right)=\tan x-x,\\ \begin{aligned} \text{原式}&=-\cfrac{2}{3}\lim\limits_{x\to0^+}\cfrac{\tan x-x}{x^3}=-\cfrac{2}{3}\lim\limits_{x\to0^+}\cfrac{\sec^2x-1}{3x^2}\\ &=-\cfrac{4}{9}\lim\limits_{x\to0^+}\left(\cfrac{\tan x}{x}\right)^2=-\cfrac{2}{9}. \end{aligned} exln(xtanx)1xln(xtanx)=xln[1+(xtanx1)]x(xtanx1)=tanxx,原式=32x0+limx3tanxx=32x0+lim3x2sec2x1=94x0+lim(xtanx)2=92.
这道题主要利用了等价无穷小代换求解

C C C

3.记 f ( x ) = 27 x 3 + 5 x 2 − 2 f(x)=27x^3+5x^2-2 f(x)=27x3+5x22的反函数为 f − 1 f^{-1} f1,求极限: lim ⁡ x → ∞ f − 1 ( 27 x ) − f − 1 ( x ) x 3 \lim\limits_{x\to\infty}\cfrac{f^{-1}(27x)-f^{-1}(x)}{\sqrt[3]{x}} xlim3x f1(27x)f1(x)

  首先,显然有 lim ⁡ x → ∞ f ( x ) x 3 = lim ⁡ x → ∞ ( 27 + 5 x − 2 x 3 ) = 27 \lim\limits_{x\to\infty}\cfrac{f(x)}{x^3}=\lim\limits_{x\to\infty}\left(27+\cfrac{5}{x}-\cfrac{2}{x^3}\right)=27 xlimx3f(x)=xlim(27+x5x32)=27
  先令 t = 27 x t=27x t=27x,再令 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x),则 t = f ( y ) t=f(y) t=f(y),且 x → ∞ x\to\infty x时, t → ∞ , y → ∞ t\to\infty,y\to\infty t,y,所以
lim ⁡ x → ∞ f − 1 ( 27 x ) x 3 = 3 lim ⁡ t → ∞ f − 1 ( t ) t 3 = 3 lim ⁡ y → ∞ y f ( y ) 3 = 3 lim ⁡ y → ∞ y 3 f ( y ) 3 = 3 1 27 3 = 1. \begin{aligned} \lim\limits_{x\to\infty}\cfrac{f^{-1}(27x)}{\sqrt[3]{x}}&=3\lim\limits_{t\to\infty}\cfrac{f^{-1}(t)}{\sqrt[3]{t}}=3\lim\limits_{y\to\infty}\cfrac{y}{\sqrt[3]{f(y)}}=3\sqrt[3]{\lim\limits_{y\to\infty}\cfrac{y^3}{f(y)}}\\ &=3\sqrt[3]{\cfrac{1}{27}}=1. \end{aligned} xlim3x f1(27x)=3tlim3t f1(t)=3ylim3f(y) y=33ylimf(y)y3 =33271 =1.
  同理,令 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x),则 x = f ( y ) x=f(y) x=f(y),且 x → ∞ x\to\infty x时, y → ∞ y\to\infty y,所以
lim ⁡ x → ∞ f − 1 ( x ) x 3 = lim ⁡ y → ∞ y f ( y ) 3 = lim ⁡ y → ∞ y 3 f ( y ) 3 = 1 27 3 = 1 3 . \lim\limits_{x\to\infty}\cfrac{f^{-1}(x)}{\sqrt[3]{x}}=\lim\limits_{y\to\infty}\cfrac{y}{\sqrt[3]{f(y)}}=\sqrt[3]{\lim\limits_{y\to\infty}\cfrac{y^3}{f(y)}}=\sqrt[3]{\cfrac{1}{27}}=\cfrac{1}{3}. xlim3x f1(x)=ylim3f(y) y=3ylimf(y)y3 =3271 =31.
  因此,原式 = 1 − 1 3 = 2 3 =1-\cfrac{1}{3}=\cfrac{2}{3} =131=32。(这道题主要利用了变量代换求解

4.计算下列极限。

(2) lim ⁡ x → 0 ∫ 0 x sin ⁡ 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t ; \lim\limits_{x\to0}\displaystyle\int^x_0\cfrac{\sin2t}{\sqrt{4+t^2}\displaystyle\int^x_0(\sqrt{t+1}-1)\mathrm{d}t}; x0lim0x4+t2 0x(t+1 1)dtsin2t;


lim ⁡ x → 0 ∫ 0 x sin ⁡ 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t = lim ⁡ x → 0 sin ⁡ 2 x 4 + x 2 ( x + 1 − 1 ) = lim ⁡ x → 0 ( x + 1 + 1 ) sin ⁡ 2 x x 4 + x 2 = lim ⁡ x → 0 2 ( x + 1 + 1 ) 4 + x 2 ⋅ sin ⁡ 2 x 2 x = 2. \begin{aligned} \lim\limits_{x\to0}\displaystyle\int^x_0\cfrac{\sin2t}{\sqrt{4+t^2}\displaystyle\int^x_0(\sqrt{t+1}-1)\mathrm{d}t}&=\lim\limits_{x\to0}\cfrac{\sin2x}{\sqrt{4+x^2}(\sqrt{x+1}-1)}\\ &=\lim\limits_{x\to0}\cfrac{(\sqrt{x+1}+1)\sin2x}{x\sqrt{4+x^2}}\\ &=\lim\limits_{x\to0}\cfrac{2(\sqrt{x+1}+1)}{\sqrt{4+x^2}}\cdot\cfrac{\sin 2x}{2x}\\ &=2. \end{aligned} x0lim0x4+t2 0x(t+1 1)dtsin2t=x0lim4+x2 (x+1 1)sin2x=x0limx4+x2 (x+1 +1)sin2x=x0lim4+x2 2(x+1 +1)2xsin2x=2.
这道题主要利用了积分式求导求解

(3) lim ⁡ x → + ∞ ( x 3 + 2 x 2 + 1 3 − x e 1 x ) ; \lim\limits_{x\to+\infty}(\sqrt[3]{x^3+2x^2+1}-xe^{\frac{1}{x}}); x+lim(3x3+2x2+1 xex1);

  令 x = 1 t x=\cfrac{1}{t} x=t1,有
lim ⁡ x → + ∞ ( x 3 + 2 x 2 + 1 3 − x e 1 x ) = lim ⁡ t → 0 + t 3 + 2 t + 1 3 − e t t = lim ⁡ t → 0 + 1 3 ( t 3 + 2 t + 1 ) − 2 3 ( 2 + 3 t 2 ) − e t 1 = 1 3 × 1 × 2 − 1 = − 1 3 . \begin{aligned} \lim\limits_{x\to+\infty}(\sqrt[3]{x^3+2x^2+1}-xe^{\frac{1}{x}})&=\lim\limits_{t\to0^+}\cfrac{\sqrt[3]{t^3+2t+1}-e^t}{t}\\ &=\lim\limits_{t\to0^+}\cfrac{\cfrac{1}{3}(t^3+2t+1)^{-\frac{2}{3}}(2+3t^2)-e^t}{1}\\ &=\cfrac{1}{3}\times1\times2-1=-\cfrac{1}{3}. \end{aligned} x+lim(3x3+2x2+1 xex1)=t0+limt3t3+2t+1 et=t0+lim131(t3+2t+1)32(2+3t2)et=31×1×21=31.
这道题主要利用了变量代换求解

(4) lim ⁡ x → 0 1 + 1 2 x 2 − 1 + x 2 ( cos ⁡ x − e x 2 2 ) sin ⁡ s 2 2 ; \lim\limits_{x\to0}\cfrac{1+\cfrac{1}{2}x^2-\sqrt{1+x^2}}{(\cos x-e^{\frac{x^2}{2}})\sin\cfrac{s^2}{2}}; x0lim(cosxe2x2)sin2s21+21x21+x2 ;


lim ⁡ x → 0 1 + 1 2 x 2 − 1 + x 2 ( cos ⁡ x − e x 2 2 ) sin ⁡ s 2 2 = lim ⁡ x → 0 1 + 1 2 x 2 − [ 1 + 1 2 x 2 − 1 8 x 4 + ο ( x 4 ) ] { [ 1 − 1 2 x 2 + ο ( x 2 ) ] − [ 1 + 1 2 x 2 + ο ( x 2 ) ] } ⋅ x 2 2 = lim ⁡ x → 0 1 8 x 4 + ο ( x 4 ) − 1 2 x 2 + ο ( x 4 ) = − 1 4 . \begin{aligned} \lim\limits_{x\to0}\cfrac{1+\cfrac{1}{2}x^2-\sqrt{1+x^2}}{(\cos x-e^{\frac{x^2}{2}})\sin\cfrac{s^2}{2}}&=\lim\limits_{x\to0}\cfrac{1+\cfrac{1}{2}x^2-\left[1+\cfrac{1}{2}x^2-\cfrac{1}{8}x^4+\omicron(x^4)\right]}{\left\{\left[1-\cfrac{1}{2}x^2+\omicron(x^2)\right]-\left[1+\cfrac{1}{2}x^2+\omicron(x^2)\right]\right\}\cdot\cfrac{x^2}{2}}\\ &=\lim\limits_{x\to0}\cfrac{\cfrac{1}{8}x^4+\omicron(x^4)}{-\cfrac{1}{2}x^2+\omicron(x^4)}=-\cfrac{1}{4}. \end{aligned} x0lim(cosxe2x2)sin2s21+21x21+x2 =x0lim{[121x2+ο(x2)][1+21x2+ο(x2)]}2x21+21x2[1+21x281x4+ο(x4)]=x0lim21x2+ο(x4)81x4+ο(x4)=41.
这道题主要利用了泰勒展开式求解

7.设 a ⩾ 5 a\geqslant5 a5且为常数,则 k k k为何值时极限 I = lim ⁡ x → + ∞ [ ( x α + 8 x 4 + 2 ) k − x ] I=\lim\limits_{x\to+\infty}[(x^\alpha+8x^4+2)^k-x] I=x+lim[(xα+8x4+2)kx]存在,并求此极限值。

  当 k ⩽ 0 k\leqslant0 k0时, I = − ∞ I=-\infty I=,极限不存在;
  当 k > 0 k>0 k>0时,
I = x = 1 t ∞ − ∞ lim ⁡ t → 0 + [ ( 1 t α + 8 t 4 + 2 ) k − 1 t ] ( α ⩾ 5 ) = lim ⁡ t → 0 + ( 1 + 8 t α − 4 + 2 t α ) k − t α k − 1 t α k . \begin{aligned} I&\xlongequal[x=\frac{1}{t}]{\infty-\infty}\lim\limits_{t\to0^+}\left[\left(\frac{1}{t^\alpha}+\frac{8}{t^4}+2\right)^k-\frac{1}{t}\right](\alpha\geqslant5)\\ &=\lim\limits_{t\to0^+}\cfrac{(1+8t^{\alpha-4}+2t^\alpha)^{k}-t^{\alpha k-1}}{t^{\alpha k}}. \end{aligned} I x=t1t0+lim[(tα1+t48+2)kt1](α5)=t0+limtαk(1+8tα4+2tα)ktαk1.
  只有当 α k − 1 = 0 \alpha k-1=0 αk1=0,即 k = 1 α k=\cfrac{1}{\alpha} k=α1时极限才可以用洛必达法则,否则极限为 ∞ \infty ,不存在。故
I = lim ⁡ t → 0 + ( 1 + 8 t α − 4 + 2 t α ) 1 α − 1 t = lim ⁡ t → 0 + 1 α ( 8 t α − 4 + 2 t α ) t . I=\lim\limits_{t\to0^+}\cfrac{(1+8t^{\alpha-4}+2t^\alpha)^{\frac{1}{\alpha}}-1}{t}=\lim\limits_{t\to0^+}\cfrac{\cfrac{1}{\alpha}(8t^{\alpha-4}+2t^\alpha)}{t}. I=t0+limt(1+8tα4+2tα)α11=t0+limtα1(8tα4+2tα).
  当 α = 5 \alpha=5 α=5时, I = lim ⁡ t → 0 + 1 5 8 t + 2 t 5 t = 8 5 I=\lim\limits_{t\to0^+}\cfrac{1}{5}\cfrac{8t+2t^5}{t}=\cfrac{8}{5} I=t0+lim51t8t+2t5=58,此时 k = 1 5 k=\cfrac{1}{5} k=51
  当 α > 5 \alpha>5 α>5时, I = 0 I=0 I=0,此时 k = 1 5 k=\cfrac{1}{5} k=51。(这道题主要利用了分类讨论求解

11.设 f ( x ) = lim ⁡ n → ∞ 1 + ( 2 x ) n + x 2 n n ( x ⩾ 0 ) f(x)=\lim\limits_{n\to\infty}\sqrt[n]{1+(2x)^n+x^{2n}}(x\geqslant0) f(x)=nlimn1+(2x)n+x2n (x0)

(1)求函数 f ( x ) f(x) f(x)的表达式;

  当 0 ⩽ x < 1 2 0\leqslant x<\cfrac{1}{2} 0x<21时,有 1 n ⩽ 1 + ( 2 x ) n + x 2 n n ⩽ 1 ⋅ 3 n \sqrt[n]{1}\leqslant\sqrt[n]{1+(2x)^n+x^{2n}}\leqslant1\cdot\sqrt[n]{3} n1 n1+(2x)n+x2n 1n3
  当 1 2 ⩽ x < 2 \cfrac{1}{2}\leqslant x<2 21x<2时,有 2 x < 1 + ( 2 x ) n + x 2 n n ⩽ 2 x 3 n 2x<\sqrt[n]{1+(2x)^n+x^{2n}}\leqslant2x\sqrt[n]{3} 2x<n1+(2x)n+x2n 2xn3
  当 x ⩾ 2 x\geqslant2 x2时,有 x 2 ⩽ 1 + ( 2 x ) n + x 2 n n ⩽ x 2 3 n x^2\leqslant\sqrt[n]{1+(2x)^n+x^{2n}}\leqslant x^2\sqrt[n]{3} x2n1+(2x)n+x2n x2n3
  又 lim ⁡ n → ∞ 3 n = 1 \lim\limits_{n\to\infty}\sqrt[n]{3}=1 nlimn3 =1,故
f ( x ) = { 1 , 0 ⩽ x < 1 2 , 2 x , 1 2 ⩽ x < 2 , x 2 , x ⩾ 2. f(x)=\begin{cases} 1,&0\leqslant x<\cfrac{1}{2},\\ 2x,&\cfrac{1}{2}\leqslant x<2,\\ x^2,&x\geqslant2. \end{cases} f(x)=1,2x,x2,0x<21,21x<2,x2.

(2)讨论函数 f ( x ) f(x) f(x)的连续性。

  因为 f ( x ) f(x) f(x) [ 0 , 1 2 ) , [ 1 2 , 2 ) , [ 2 , + ∞ ) \left[0,\cfrac{1}{2}\right),\left[\cfrac{1}{2},2\right),\left[2,+\infty\right) [0,21),[21,2),[2,+)上连续,又
lim ⁡ x → ( 1 2 ) − f ( x ) = 1 , lim ⁡ x → ( 1 2 ) + f ( x ) = 1 , f ( 1 2 ) = 1 , lim ⁡ x → 2 − f ( x ) = 4 , lim ⁡ x → 2 + f ( x ) = 4 , f ( 2 ) = 4 , \lim\limits_{x\to\left(\frac{1}{2}\right)^-}f(x)=1,\quad\lim\limits_{x\to\left(\frac{1}{2}\right)^+}f(x)=1,\quad f\left(\frac{1}{2}\right)=1,\\ \lim\limits_{x\to2^-}f(x)=4,\quad\lim\limits_{x\to2^+}f(x)=4,\quad f(2)=4,\\ x(21)limf(x)=1,x(21)+limf(x)=1,f(21)=1,x2limf(x)=4,x2+limf(x)=4,f(2)=4,
  所以 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)上连续。(这道题主要利用了分类讨论求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

你可能感兴趣的:(考研数学一高等数学刷题错题记录,#,高等数学,考研,张宇,其他)