点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
作者:Amusi | 来源:CVer
前言
CVer 正式盘点CVPR 2021上各个方向的工作,本篇是热度依然很高的2D目标检测论文大盘点,之前已分享:
最新!CVPR 2021 视觉Transformer论文大盘点(43篇)
最新!CVPR 2021 OCR领域论文大盘点(22篇)
关于更多CVPR 2021的论文和开源代码,可见下面链接:
https://github.com/amusi/CVPR2021-Papers-with-Code
CVPR 2021 2D目标检测论文(65篇)
Amusi 一共搜集了65篇2D目标检测论文,涉及:通用目标检测、旋转目标检测、Few-shot/自监督/半监督/无监督目标检测等方向。
注1:这应该是目前各平台上最新最全面的CVPR 2021 2D目标检测盘点资料,欢迎点赞收藏和分享
注2:3D目标检测、人脸检测、异常检测等检测方向并不在本文范畴,后续将单独分享,敬请期待!
注3:65篇中有超过50+篇论文都来自华人,而且至少50+篇都来自中国地区(高校、企业),其中高校以清华、中科院、国科大等为主,企业以旷视、商汤等为主。
1. Scaled-YOLOv4: Scaling Cross Stage Partial Network
作者单位: 中央研究院, 英特尔, 静宜大学
Paper: https://arxiv.org/abs/2011.08036
Code: https://github.com/WongKinYiu/ScaledYOLOv4
中文解读: YOLOv4官方改进版来了!55.8% AP!速度最高达1774 FPS,Scaled-YOLOv4正式开源!
2. You Only Look One-level Feature
作者单位: 中科院, 国科大, 旷视科技
Paper: https://arxiv.org/abs/2103.09460
Code: https://github.com/megvii-model/YOLOF
中文解读: CVPR 2021 | 没有FPN!中科院&旷视提出YOLOF:你只需看一层特征
3. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
作者单位: 香港大学, 同济大学, 字节跳动AI Lab, 加利福尼亚大学伯克利分校
Paper: https://arxiv.org/abs/2011.12450
Code: https://github.com/PeizeSun/SparseR-CNN
中文解读: 目标检测新范式!港大同济伯克利提出Sparse R-CNN,代码刚刚开源!
4. End-to-End Object Detection with Fully Convolutional Network
作者单位: 旷视科技, 西安交通大学
Paper: https://arxiv.org/abs/2012.03544
Code: https://github.com/Megvii-BaseDetection/DeFCN
5. Dynamic Head: Unifying Object Detection Heads with Attentions
作者单位: 微软
Paper: https://arxiv.org/abs/2106.08322
Code: https://github.com/microsoft/DynamicHead
中文解读: 60.6 AP!打破COCO记录!微软提出DyHead:将注意力与目标检测Heads统一
6. Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection
作者单位: 南京理工大学, Momenta, 南京大学, 清华大学
Paper: https://arxiv.org/abs/2011.12885
Code: https://github.com/implus/GFocalV2
中文解读:CVPR 2021 | GFLV2:目标检测良心技术,无Cost涨点!
7. UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
作者单位: 华南理工大学, 腾讯微信AI
Paper(Oral): https://arxiv.org/abs/2011.09094
Code: https://github.com/dddzg/up-detr
中文解读: CVPR 2021 Oral | Transformer再发力!华南理工和微信提出UP-DETR:无监督预训练检测器
8. MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
作者单位: 威斯康星大学, 谷歌
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Xiong_MobileDets_Searching_for_Object_Detection_Architectures_for_Mobile_Accelerators_CVPR_2021_paper.pdf
Code: https://github.com/tensorflow/models/tree/master/research/object_detection
9. Tracking Pedestrian Heads in Dense Crowd
作者单位: 雷恩第一大学
Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
Code1: https://github.com/Sentient07/HeadHunter
Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
10. Joint-DetNAS: Upgrade Your Detector with NAS, Pruning and Dynamic Distillation
作者单位: 香港科技大学, 华为诺亚
Paper: https://arxiv.org/abs/2105.12971
Code: None
11. PSRR-MaxpoolNMS: Pyramid Shifted MaxpoolNMS with Relationship Recovery
作者单位: A*star, 四川大学, 南洋理工大学
Paper: https://arxiv.org/abs/2105.12990
Code: None
12. IQDet: Instance-wise Quality Distribution Sampling for Object Detection
作者单位: 旷视科技
Paper: https://arxiv.org/abs/2104.06936
Code: None
13. Multi-Scale Aligned Distillation for Low-Resolution Detection
作者单位: 香港中文大学, Adobe研究院, 思谋科技
Paper: https://jiaya.me/papers/ms_align_distill_cvpr21.pdf
Code: https://github.com/Jia-Research-Lab/MSAD
14. Adaptive Class Suppression Loss for Long-Tail Object Detection
作者单位: 中科院, 国科大, ObjectEye, 北京大学, 鹏城实验室, Nexwise
Paper: https://arxiv.org/abs/2104.00885
Code: https://github.com/CASIA-IVA-Lab/ACSL
15. VarifocalNet: An IoU-aware Dense Object Detector
作者单位: 昆士兰科技大学, 昆士兰大学
Paper(Oral): https://arxiv.org/abs/2008.13367
Code: https://github.com/hyz-xmaster/VarifocalNet
16. OTA: Optimal Transport Assignment for Object Detection
作者单位: 早稻田大学, 旷视科技
Paper: https://arxiv.org/abs/2103.14259
Code: https://github.com/Megvii-BaseDetection/OTA
17. Distilling Object Detectors via Decoupled Features
作者单位: 华为诺亚, 悉尼大学
Paper: https://arxiv.org/abs/2103.14475
Code: https://github.com/ggjy/DeFeat.pytorch
18. Robust and Accurate Object Detection via Adversarial Learning
作者单位: 谷歌, UCLA, UCSC
Paper: https://arxiv.org/abs/2103.13886
Code: None
19. OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection
作者单位: 北京大学, Anyvision, 石溪大学
Paper: https://arxiv.org/abs/2103.04507
Code: https://github.com/VDIGPKU/OPANAS
20. Multiple Instance Active Learning for Object Detection
作者单位: 国科大, 华为诺亚, 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.pdf
Code: https://github.com/yuantn/MI-AOD
21. Towards Open World Object Detection
作者单位: 印度理工学院, MBZUAI, 澳大利亚国立大学, 林雪平大学
Paper(Oral): https://arxiv.org/abs/2103.02603
Code: https://github.com/JosephKJ/OWOD
22. RankDetNet: Delving Into Ranking Constraints for Object Detection
作者单位: 赛灵思
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_RankDetNet_Delving_Into_Ranking_Constraints_for_Object_Detection_CVPR_2021_paper.html
Code: None
23. Dense Label Encoding for Boundary Discontinuity Free Rotation Detection
作者单位: 上海交通大学, 国科大
Paper: https://arxiv.org/abs/2011.09670
Code1: https://github.com/Thinklab-SJTU/DCL_RetinaNet_Tensorflow
Code2: https://github.com/yangxue0827/RotationDetection
24. ReDet: A Rotation-equivariant Detector for Aerial Object Detection
作者单位: 武汉大学
Paper: https://arxiv.org/abs/2103.07733
Code: https://github.com/csuhan/ReDet
25. Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection
作者单位: 国科大, 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Beyond_Bounding-Box_Convex-Hull_Feature_Adaptation_for_Oriented_and_Densely_Packed_CVPR_2021_paper.html
Code: https://github.com/SDL-GuoZonghao/BeyondBoundingBox
26. Accurate Few-Shot Object Detection With Support-Query Mutual Guidance and Hybrid Loss
作者单位: 复旦大学, 同济大学, 浙江大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Accurate_Few-Shot_Object_Detection_With_Support-Query_Mutual_Guidance_and_Hybrid_CVPR_2021_paper.html
Code: None
27. Adaptive Image Transformer for One-Shot Object Detection
作者单位: 中央研究院, 台湾AI Labs
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Adaptive_Image_Transformer_for_One-Shot_Object_Detection_CVPR_2021_paper.html
Code: None
28. Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection
作者单位: 北京大学, 北邮
Paper: https://arxiv.org/abs/2103.17115
Code: https://github.com/hzhupku/DCNet
29. Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection
作者单位: 卡内基梅隆大学(CMU)
Paper: https://arxiv.org/abs/2103.01903
Code: None
30. FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
作者单位: 南加利福尼亚大学, 旷视科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sun_FSCE_Few-Shot_Object_Detection_via_Contrastive_Proposal_Encoding_CVPR_2021_paper.html
Code: https://github.com/MegviiDetection/FSCE
31. Hallucination Improves Few-Shot Object Detection
作者单位: 伊利诺伊大学厄巴纳-香槟分校
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Hallucination_Improves_Few-Shot_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/pppplin/HallucFsDet
32. Few-Shot Object Detection via Classification Refinement and Distractor Retreatment
作者单位: 新加坡国立大学, SIMTech
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Few-Shot_Object_Detection_via_Classification_Refinement_and_Distractor_Retreatment_CVPR_2021_paper.html
Code: None
33. Generalized Few-Shot Object Detection Without Forgetting
作者单位: 旷视科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Fan_Generalized_Few-Shot_Object_Detection_Without_Forgetting_CVPR_2021_paper.html
Code: None
34. Transformation Invariant Few-Shot Object Detection
作者单位: 华为诺亚方舟实验室
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Transformation_Invariant_Few-Shot_Object_Detection_CVPR_2021_paper.html
Code: None
35. UniT: Unified Knowledge Transfer for Any-Shot Object Detection and Segmentation
作者单位: 不列颠哥伦比亚大学, Vector AI, CIFAR AI Chair
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Khandelwal_UniT_Unified_Knowledge_Transfer_for_Any-Shot_Object_Detection_and_Segmentation_CVPR_2021_paper.html
Code: https://github.com/ubc-vision/UniT
36. Beyond Max-Margin: Class Margin Equilibrium for Few-Shot Object Detection
作者单位: 国科大, 厦门大学, 鹏城实验室
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Beyond_Max-Margin_Class_Margin_Equilibrium_for_Few-Shot_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/Bohao-Lee/CME
37. Points As Queries: Weakly Semi-Supervised Object Detection by Points]
作者单位: 旷视科技, 复旦大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Points_As_Queries_Weakly_Semi-Supervised_Object_Detection_by_Points_CVPR_2021_paper.html
Code: None
38. Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object Detection
作者单位: 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Data-Uncertainty_Guided_Multi-Phase_Learning_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
Code: None
39. Positive-Unlabeled Data Purification in the Wild for Object Detection
作者单位: 华为诺亚方舟实验室, 悉尼大学, 北京大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Guo_Positive-Unlabeled_Data_Purification_in_the_Wild_for_Object_Detection_CVPR_2021_paper.html
Code: None
40. Interactive Self-Training With Mean Teachers for Semi-Supervised Object Detection
作者单位: 阿里巴巴, 香港理工大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yang_Interactive_Self-Training_With_Mean_Teachers_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
Code: None
41. Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework
作者单位: 阿里巴巴
Paper: https://arxiv.org/abs/2103.11402
Code: None
42. Humble Teachers Teach Better Students for Semi-Supervised Object Detection
作者单位: 卡内基梅隆大学(CMU), 亚马逊
Homepage: https://yihet.com/humble-teacher
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tang_Humble_Teachers_Teach_Better_Students_for_Semi-Supervised_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/lryta/HumbleTeacher
43. Interpolation-Based Semi-Supervised Learning for Object Detection
作者单位: 首尔大学, 阿尔托大学等
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Jeong_Interpolation-Based_Semi-Supervised_Learning_for_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/soo89/ISD-SSD
44. Domain-Specific Suppression for Adaptive Object Detection
作者单位: 中科院, 寒武纪, 国科大
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Domain-Specific_Suppression_for_Adaptive_Object_Detection_CVPR_2021_paper.html
Code: None
45. MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection
作者单位: 约翰斯·霍普金斯大学, 梅赛德斯—奔驰
Paper: https://arxiv.org/abs/2103.04224
Code: None
46. Unbiased Mean Teacher for Cross-Domain Object Detection
作者单位: 电子科技大学, ETH Zurich
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Deng_Unbiased_Mean_Teacher_for_Cross-Domain_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/kinredon/umt
47. I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage Object Detectors
作者单位: 香港大学, 厦门大学, Deepwise AI Lab
Paper: https://arxiv.org/abs/2103.13757
Code: None
48. There Is More Than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking With Sound by Distilling Multimodal Knowledge
作者单位: 弗莱堡大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Valverde_There_Is_More_Than_Meets_the_Eye_Self-Supervised_Multi-Object_Detection_CVPR_2021_paper.html
Code: http://rl.uni-freiburg.de/research/multimodal-distill
49. Instance Localization for Self-supervised Detection Pretraining
作者单位: 香港中文大学, 微软亚洲研究院
Paper: https://arxiv.org/abs/2102.08318
Code: https://github.com/limbo0000/InstanceLoc
50. Informative and Consistent Correspondence Mining for Cross-Domain Weakly Supervised Object Detection
作者单位: 北航, 鹏城实验室, 商汤科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hou_Informative_and_Consistent_Correspondence_Mining_for_Cross-Domain_Weakly_Supervised_Object_CVPR_2021_paper.html
Code: None
51. DAP: Detection-Aware Pre-training with Weak Supervision
作者单位: UIUC, 微软
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhong_DAP_Detection-Aware_Pre-Training_With_Weak_Supervision_CVPR_2021_paper.html
Code: None
52. Open-Vocabulary Object Detection Using Captions
作者单位:Snap, 哥伦比亚大学
Paper(Oral): https://openaccess.thecvf.com/content/CVPR2021/html/Zareian_Open-Vocabulary_Object_Detection_Using_Captions_CVPR_2021_paper.html
Code: https://github.com/alirezazareian/ovr-cnn
53. Depth From Camera Motion and Object Detection
作者单位: 密歇根大学, SIAI
Paper: https://arxiv.org/abs/2103.01468
Code: https://github.com/griffbr/ODMD
Dataset: https://github.com/griffbr/ODMD
54. Unsupervised Object Detection With LIDAR Clues
作者单位: 商汤科技, 国科大, 中科大
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tian_Unsupervised_Object_Detection_With_LIDAR_Clues_CVPR_2021_paper.html
Code: None
55. GAIA: A Transfer Learning System of Object Detection That Fits Your Needs
作者单位: 国科大, 北理, 中科院, 商汤科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Bu_GAIA_A_Transfer_Learning_System_of_Object_Detection_That_Fits_CVPR_2021_paper.html
Code: https://github.com/GAIA-vision/GAIA-det
56. General Instance Distillation for Object Detection
作者单位: 旷视科技, 北航
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Dai_General_Instance_Distillation_for_Object_Detection_CVPR_2021_paper.html
Code: None
57. AQD: Towards Accurate Quantized Object Detection
作者单位: 蒙纳士大学, 阿德莱德大学, 华南理工大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_AQD_Towards_Accurate_Quantized_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/aim-uofa/model-quantization
58. Scale-Aware Automatic Augmentation for Object Detection
作者单位: 香港中文大学, 字节跳动AI Lab, 思谋科技
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Scale-Aware_Automatic_Augmentation_for_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/Jia-Research-Lab/SA-AutoAug
59. Equalization Loss v2: A New Gradient Balance Approach for Long-Tailed Object Detection
作者单位: 同济大学, 商汤科技, 清华大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Tan_Equalization_Loss_v2_A_New_Gradient_Balance_Approach_for_Long-Tailed_CVPR_2021_paper.html
Code: https://github.com/tztztztztz/eqlv2
60. Class-Aware Robust Adversarial Training for Object Detection
作者单位: 哥伦比亚大学, 中央研究院
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Class-Aware_Robust_Adversarial_Training_for_Object_Detection_CVPR_2021_paper.html
Code: None
61. Improved Handling of Motion Blur in Online Object Detection
作者单位: 伦敦大学学院
Homepage: http://visual.cs.ucl.ac.uk/pubs/handlingMotionBlur/
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sayed_Improved_Handling_of_Motion_Blur_in_Online_Object_Detection_CVPR_2021_paper.html
Code: None
62. Multiple Instance Active Learning for Object Detection
作者单位: 国科大, 华为诺亚
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Yuan_Multiple_Instance_Active_Learning_for_Object_Detection_CVPR_2021_paper.html
Code: https://github.com/yuantn/MI-AOD
63. Neural Auto-Exposure for High-Dynamic Range Object Detection
作者单位: Algolux, 普林斯顿大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
Code: None
64. Generalizable Pedestrian Detection: The Elephant in the Room
作者单位: IIAI, 阿尔托大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hasan_Generalizable_Pedestrian_Detection_The_Elephant_in_the_Room_CVPR_2021_paper.html
Code: https://github.com/hasanirtiza/Pedestron
65. Neural Auto-Exposure for High-Dynamic Range Object Detection
作者单位: Algolux, 普林斯顿大学
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Onzon_Neural_Auto-Exposure_for_High-Dynamic_Range_Object_Detection_CVPR_2021_paper.html
Code: None
上述65篇目标检测论文下载
后台回复:CVPR2021,即可下载上述论文PDF
CVPR和Transformer资料下载
后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集
后台回复:Transformer综述,即可下载最新的两篇Transformer综述PDF
CVer-目标检测交流群成立
扫码添加CVer助手,可申请加入CVer-目标检测 微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲长按加小助手微信,进交流群▲点击上方卡片,关注CVer公众号
整理不易,请给CVer点赞和在看