分类其实是从特定的数据中挖掘模式,作出判断的过程。
分类学习主要过程:
(1)训练数据集存在一个类标记号,判断它是正向数据集(起积极作用,不垃圾邮件),还是负向数据集(起抑制作用,垃圾邮件);
(2)然后需要对数据集进行学习训练,并构建一个训练的模型;
(3)通过该模型对预测数据集进预测,并计算其结果的性能。
从广义上说,聚类就是将数据集中在某些方面相似的数据成员放在一起。
一个聚类就是一些数据实例的集合,其中处于相同聚类中的数据元素彼此相似,但是处于不同聚类中的元素彼此不同。
由于在聚类中那些表示数据类别的分类或分组信息是没有的, 即这些数据是没有标签的,所以聚类通常被归为无监督学习(Unsupervised Learning),分类使用的数据大多数是有标签的,称为有监督学习。
聚类的目的也是把数据分类,但是事先是不知道如何去分的,完全是算法自己来判断各条数据之间的相似性,相似的就放在一起。
在聚类的结论出来之前,完全不知道每一类有什么特点,一定要根据聚类的结果通过人的经验来分析,看看聚成的这一类大概有什么特点。
总之,聚类主要是"物以类聚",通过相似性把相似元素聚集在一起,它没有标签;而分类通过标签来训练得到一个模型,对新数据集进行预测的过程,其数据存在标签。
聚类算法分为三大类:
K-Means聚类是最常用的聚类算法,最初起源于信号处理,其目标是将数据点划分为K个类簇。
该算法的最大优点是简单、便于理解,运算速度较快,缺点是要在聚类前指定聚集的类簇数。
k-means算法是一种原型聚类算法。
第一步,确定K值,即将数据集聚集成K个类簇或小组。
第二步,从数据集中随机选择K个数据点作为质心(Centroid)或数据中心。
第三步,分别计算每个点到每个质心之间的距离,并将每个点划分到离最近质心的小组。
第四步,当每个质心都聚集了一些点后,重新定义算法选出新的质心。(对于每个簇,计
算其均值,即得到新的k个质心点)
第五步,迭代执行第三步到第四步,直到迭代终止条件满足为止(聚类结果不再变化)
第一步,确定K值,即将数据集聚集成K个类簇或小组。
----这里我们选K=2
第二步,从数据集中随机选择K个数据点作为质心(Centroid)或数
据中心。
----假设我们选择P1和P2作为初始的质心
第三步,分别计算每个点到每个质心之间的距离,并将每个点划分
到离最近质心的小组。
----计算P3到P1的距离:√10 = 3.16;
----计算P3到P2的距离:√((3-1)^2+(1-2)^2 = √5 = 2.24;
----所以P3离P2更近,P3就加入P2的簇。同理,P4、P5、P6;
P3到P6都跟P2更近,所以第一次分组的结果是:
• 组A:P1
• 组B:P2、P3、P4、P5、P6
第四步,当每个质心都聚集了一些点后,重新定义算法选出新的质心。
(对于每个簇,计算其均值,即得到新的k个质心点)
----组A没啥可选的,还是P1自己
----组B有五个点,需要选新质心。 这里要注意选择的方法是
每个组X坐标的平均值和Y坐标的平均值组成的新的点,为
新质心,也就是说这个质心是“虚拟的”。
----因此, B组选出新质心的坐标为: P哥((1+3+8+9+10) /5,
(2+1+8+10+7) /5) =(6.2, 5.6)。
----综合两组,新质心为P1(0, 0), P哥(6.2, 5.6) 。
----而P2-P6重新成为离散点。
再次计算点到质心的距离:
这时可以看到P2、 P3离P1更近, P4、 P5、 P6离P哥更
近。
第二次分组的结果是:
• 组A: P1、 P2、 P3
• 组B: P4、 P5、 P6(虚拟质心这时候消失)
按照上一次的方法选出两个新的虚拟质心:
---P哥1(1.33, 1), P哥2(9, 8.33)。
第三次计算点到质心的距离:
--- 这时可以看到P1、 P2、 P3离P哥1更近, P4、
P5、 P6离P哥2更近。
--- 所以第三次分组的结果是:
• 组A: P1、 P2、 P3
• 组B: P4、 P5、 P6
我们发现,这次分组的结果和上次没有任何变化了,说
明已经收敛,聚类结束。
在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作。
我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压缩图像颜色,实现图像颜色层级分割。
优点:
1.是解决聚类问题的一种经典算法,简单、快速
2.对处理大数据集,该算法保持高效率
3.当结果簇是密集的,它的效果较好
缺点:
1.必须事先给出k(要生成的簇的数目)。
2.对躁声和孤立点数据敏感
# coding=utf-8
from sklearn.cluster import KMeans
"""
第一部分:数据集
X表示二维矩阵数据,篮球运动员比赛数据
总共20行,每行两列数据
第一列表示球员每分钟助攻数:assists_per_minute
第二列表示球员每分钟得分数:points_per_minute
"""
X = [[0.0888, 0.5885],
[0.1399, 0.8291],
[0.0747, 0.4974],
[0.0983, 0.5772],
[0.1276, 0.5703],
[0.1671, 0.5835],
[0.1306, 0.5276],
[0.1061, 0.5523],
[0.2446, 0.4007],
[0.1670, 0.4770],
[0.2485, 0.4313],
[0.1227, 0.4909],
[0.1240, 0.5668],
[0.1461, 0.5113],
[0.2315, 0.3788],
[0.0494, 0.5590],
[0.1107, 0.4799],
[0.1121, 0.5735],
[0.1007, 0.6318],
[0.2567, 0.4326],
[0.1956, 0.4280]
]
#输出数据集
print (X)
"""
第二部分:KMeans聚类
clf = KMeans(n_clusters=3) 表示类簇数为3,聚成3类数据,clf即赋值为KMeans
y_pred = clf.fit_predict(X) 载入数据集X,并且将聚类的结果赋值给y_pred
"""
clf = KMeans(n_clusters=3)
y_pred = clf.fit_predict(X)
#输出完整Kmeans函数,包括很多省略参数
print(clf)
#输出聚类预测结果
print("y_pred = ",y_pred)
"""
第三部分:可视化绘图
"""
import numpy as np
import matplotlib.pyplot as plt
#获取数据集的第一列和第二列数据 使用for循环获取 n[0]表示X第一列
x = [n[0] for n in X]
print (x)
y = [n[1] for n in X]
print (y)
'''
绘制散点图
参数:x横轴; y纵轴; c=y_pred聚类预测结果; marker类型:o表示圆点,*表示星型,x表示点;
'''
plt.scatter(x, y, c=y_pred, marker='x')
#绘制标题
plt.title("Kmeans-Basketball Data")
#绘制x轴和y轴坐标
plt.xlabel("assists_per_minute")
plt.ylabel("points_per_minute")
#设置右上角图例
plt.legend(["A","B","C"])
#显示图形
plt.show()
# coding: utf-8
'''
在OpenCV中,Kmeans()函数原型如下所示:
retval, bestLabels, centers = kmeans(data, K, bestLabels, criteria, attempts, flags[, centers])
data表示聚类数据,最好是np.flloat32类型的N维点集
K表示聚类类簇数
bestLabels表示输出的整数数组,用于存储每个样本的聚类标签索引
criteria表示迭代停止的模式选择,这是一个含有三个元素的元组型数。格式为(type, max_iter, epsilon)
其中,type有如下模式:
—–cv2.TERM_CRITERIA_EPS :精确度(误差)满足epsilon停止。
—-cv2.TERM_CRITERIA_MAX_ITER:迭代次数超过max_iter停止。
—-cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER,两者合体,任意一个满足结束。
attempts表示重复试验kmeans算法的次数,算法返回产生的最佳结果的标签
flags表示初始中心的选择,两种方法是cv2.KMEANS_PP_CENTERS ;和cv2.KMEANS_RANDOM_CENTERS
centers表示集群中心的输出矩阵,每个集群中心为一行数据
'''
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像灰度颜色
img = cv2.imread('lenna.png', 0)
print (img.shape)
#获取图像高度、宽度
rows, cols = img.shape[:]
#图像二维像素转换为一维
data = img.reshape((rows * cols, 1))
data = np.float32(data)
#停止条件 (type,max_iter,epsilon)
criteria = (cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
#设置标签
flags = cv2.KMEANS_RANDOM_CENTERS
#K-Means聚类 聚集成4类
compactness, labels, centers = cv2.kmeans(data, 4, None, criteria, 10, flags)
#生成最终图像
dst = labels.reshape((img.shape[0], img.shape[1]))
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图像
titles = [u'原始图像', u'聚类图像']
images = [img, dst]
for i in range(2):
plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray'),
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
# coding: utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lenna.png')
print (img.shape)
#图像二维像素转换为一维
data = img.reshape((-1,3))
data = np.float32(data)
#停止条件 (type,max_iter,epsilon)
criteria = (cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
#设置标签
flags = cv2.KMEANS_RANDOM_CENTERS
#K-Means聚类 聚集成2类
compactness, labels2, centers2 = cv2.kmeans(data, 2, None, criteria, 10, flags)
#K-Means聚类 聚集成4类
compactness, labels4, centers4 = cv2.kmeans(data, 4, None, criteria, 10, flags)
#K-Means聚类 聚集成8类
compactness, labels8, centers8 = cv2.kmeans(data, 8, None, criteria, 10, flags)
#K-Means聚类 聚集成16类
compactness, labels16, centers16 = cv2.kmeans(data, 16, None, criteria, 10, flags)
#K-Means聚类 聚集成64类
compactness, labels64, centers64 = cv2.kmeans(data, 64, None, criteria, 10, flags)
#图像转换回uint8二维类型
centers2 = np.uint8(centers2)
res = centers2[labels2.flatten()]
dst2 = res.reshape((img.shape))
centers4 = np.uint8(centers4)
res = centers4[labels4.flatten()]
dst4 = res.reshape((img.shape))
centers8 = np.uint8(centers8)
res = centers8[labels8.flatten()]
dst8 = res.reshape((img.shape))
centers16 = np.uint8(centers16)
res = centers16[labels16.flatten()]
dst16 = res.reshape((img.shape))
centers64 = np.uint8(centers64)
res = centers64[labels64.flatten()]
dst64 = res.reshape((img.shape))
#图像转换为RGB显示
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst2 = cv2.cvtColor(dst2, cv2.COLOR_BGR2RGB)
dst4 = cv2.cvtColor(dst4, cv2.COLOR_BGR2RGB)
dst8 = cv2.cvtColor(dst8, cv2.COLOR_BGR2RGB)
dst16 = cv2.cvtColor(dst16, cv2.COLOR_BGR2RGB)
dst64 = cv2.cvtColor(dst64, cv2.COLOR_BGR2RGB)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图像
titles = [u'原始图像', u'聚类图像 K=2', u'聚类图像 K=4',
u'聚类图像 K=8', u'聚类图像 K=16', u'聚类图像 K=64']
images = [img, dst2, dst4, dst8, dst16, dst64]
for i in range(6):
plt.subplot(2,3,i+1), plt.imshow(images[i], 'gray'),
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
层次聚类是一种很直观的算法。顾名思义就是要一层一层地进行聚类。
层次法(Hierarchical methods) 先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。
层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive) ,也可以理解为自下而上法(bottom-up)和自上而下法(topdown)。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。 这里给出采用最小距离的凝聚层次聚类算法流程:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、 (3),直到所有类最后合并成一类。
特点:
• 凝聚的层次聚类并没有类似K均值的全局目标函数,没有局部极小问题或是很难选择初始点的问题。
• 合并的操作往往是最终的,一旦合并两个簇之后就不会撤销。
• 当然其计算存储的代价是昂贵的。
优点:
1,距离和规则的相似度容易定义,限制少;
2,不需要预先制定聚类数;
3,可以发现类的层次关系;
4,可以聚类成其它形状
缺点:
1,计算复杂度太高;
2,奇异值也能产生很大影响;
3,算法很可能聚类成链状
如上图所示给了5个点,横坐标上的乱序数字代表序号并非坐标值。该图描绘了5个点进行层次聚类的过程。
Z的第一行: [0, 3]意思是类别0和类别3距离最近,首先聚成一类,并自动定义类别为5(=len(X)-1+1),第三列数字0代表0和3两个点的距离,因为二者是重叠的,同一个坐标,故而距离为0,第四列为该类别的元素数,包含了0和3,故有2个
Z的第二行: [4, 5]意思是类别4和上面聚类的新类别5距离为第二近, 4、 5聚成一类,类别为6(=len(X)-1+2)
第三行、第四行以此类推,
因为类别5有两个样本,加上类别4形成类别6,有3个样本;
类别7是类别1、 2聚类形成,有两个样本;
类别6、 7聚成一类后,类别8有5个样本,这样X全部样本参与聚类,聚类完成。
Z第四列中有样本的个数,当最下面一行中的样本数达到样本总数时,聚类就完成了。
想分两类时,就从上往下数有两根竖线时进行切割,那么所对应的竖线下面所连接的为一类
想分三类时,就从上往下数有三根竖线时进行切割,那么所对应的竖线下面所连接的为一类
每一种聚类方法都有其特定的数据结构,对于服从高斯分布的数据用K-Means来进行聚类效果会比较好。而对于类别之间存在层结构的数据,用层次聚类会比较好。
###cluster.py
#导入相应的包
from scipy.cluster.hierarchy import dendrogram, linkage,fcluster
from matplotlib import pyplot as plt
'''
linkage(y, method=’single’, metric=’euclidean’) 共包含3个参数:
1. y是距离矩阵,可以是1维压缩向量(距离向量),也可以是2维观测向量(坐标矩阵)。
若y是1维压缩向量,则y必须是n个初始观测值的组合,n是坐标矩阵中成对的观测值。
2. method是指计算类间距离的方法。
'''
'''
fcluster(Z, t, criterion=’inconsistent’, depth=2, R=None, monocrit=None)
1.第一个参数Z是linkage得到的矩阵,记录了层次聚类的层次信息;
2.t是一个聚类的阈值-“The threshold to apply when forming flat clusters”。
'''
X = [[1,2],[3,2],[4,4],[1,2],[1,3]]
Z = linkage(X, 'ward')
f = fcluster(Z,4,'distance')
fig = plt.figure(figsize=(5, 3))
dn = dendrogram(Z)
print(Z)
plt.show()
需要两个参数:ε (eps) 和形成高密度区域所需要的最少点数 (minPts)
• 它由一个任意未被访问的点开始,然后探索这个点的 ε-邻域,如果 ε-邻域里有足够的点(这个点数要确定是指包括自身还是不包括),则建立一个新的聚类,否则这个点被标签为杂音。
• 注意,这个杂音点之后可能被发现在其它点的 ε-邻域里,而该 ε-邻域可能有足够的点,届时这个点会被加入该聚类中。
• 当某个点可能既出现在某个点的领域又出现在另一个点的领域,则计算该点到两个目标点的距离确定更适合那个。
优点:
缺点:
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
from sklearn.cluster import DBSCAN
iris = datasets.load_iris()
X = iris.data[:, :4] # #表示我们只取特征空间中的4个维度
print(X.shape)
# 绘制数据分布图
'''
plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='see')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc=2)
plt.show()
'''
dbscan = DBSCAN(eps=0.4, min_samples=9)
dbscan.fit(X)
label_pred = dbscan.labels_
# 绘制结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc=2)
plt.show()
1.根据数据构造一个 图结构(Graph) ,Graph 的每一个节点对应一个数据点,将相
似的点连接起来,并且边的权重用于表示数据之间的相似度。把这个 Graph 用邻接矩
阵的形式表示出来,记为 W 。
2. 把 W 的每一列元素加起来得到 N 个数,把它们放在对角线上(其他地方都是零),
组成一个 N * N的矩阵,记为 D 。并令 L = D-W 。
3.求出 L 的前 k 个特征值,以及对应的特征向量。
4.把这 k 个特征(列)向量排列在一起组成一个 N * k 的矩阵,将其中每一行看作 k
维空间中的一个向量,并使用 K-means 算法进行聚类。聚类的结果中每一行所属的类
别就是原来 Graph 中的节点亦即最初的N 个数据点分别所属的类别
邻接矩阵:
逻辑结构分为两部分:V和E集合,其中,V是顶点,E是边。因此,用一个一维数组存放图中
所有顶点数据;用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接
矩阵。邻接矩阵又分为有向图邻接矩阵和无向图邻接矩阵
简单抽象谱聚类过程,主要有两步: