结束y_test,y_pred分别是一维的测试数据集标签列表、一维的模型预测结果列表
from sklearn.metrics import confusion_matrix # 引入相应的库
cnf_matrix = confusion_matrix(y_test,y_pred)
class = ['A','B','C','D','E'] #类别标签
confusion_matrix = [[9 1 3 4 0 0]
[2,13,1,3,4]
[1 4 10 0 13]
[3 1 1 17 0]
[0 0 0 1 14]]
#混淆矩阵
#confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
classes = ['A','B','C','D','E']
confusion_matrix = np.array([(9,1,3,4,0),(2,13,1,3,4),(1,4,10,0,13),(3,1,1,17,0),(0,0,0,1,14)],dtype=np.float64)
plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.Oranges) #按照像素显示出矩阵
plt.title('confusion_matrix')
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=-45)
plt.yticks(tick_marks, classes)
thresh = confusion_matrix.max() / 2.
#iters = [[i,j] for i in range(len(classes)) for j in range((classes))]
#ij配对,遍历矩阵迭代器
iters = np.reshape([[[i,j] for j in range(5)] for i in range(5)],(confusion_matrix.size,2))
for i, j in iters:
plt.text(j, i, format(confusion_matrix[i, j])) #显示对应的数字
plt.ylabel('Real label')
plt.xlabel('Prediction')
plt.tight_layout()
plt.show()
from sklearn.metrics import confusion_matrix
mat = confusion_matrix(ytest, yfit)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
xticklabels=faces.target_names,
yticklabels=faces.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label');