一阶微分形式不变性

一阶微分形式不变性

y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x),则 d y = f ′ ( u ) d u = f ′ ( u ) ⋅ g ′ ( x ) d x dy=f'(u)du=f'(u)\cdot g'(x)dx dy=f(u)du=f(u)g(x)dx

形式不变性指若 y = f ( u ) y=f(u) y=f(u),则无论 u u u是自变量还是中间变量,对 y y y微分保持形式不变, d y = f ′ ( u ) d u dy=f'(u)du dy=f(u)du


例1

y = cos ⁡ ln ⁡ ( 2 x + 1 ) y=\cos\ln(2x+1) y=cosln(2x+1),求 d y dy dy.

解: d y = − sin ⁡ ln ⁡ ( 2 x + 1 ) ⋅ 1 2 x + 1 ⋅ 2 d x = − 2 sin ⁡ ln ⁡ ( 2 x + 1 ) 2 x + 1 d x dy=-\sin\ln(2x+1)\cdot\dfrac{1}{2x+1}\cdot 2dx=-\dfrac{2\sin\ln(2x+1)}{2x+1}dx dy=sinln(2x+1)2x+112dx=2x+12sinln(2x+1)dx


例2

f ( x ) f(x) f(x)可导, y = f ( sin ⁡ x ) + e f ( x ) y=f(\sin x)+e^{f(x)} y=f(sinx)+ef(x),求 d y dy dy.

解: d y = [ f ′ ( sin ⁡ x ) ⋅ cos ⁡ x + e f ( x ) ⋅ f ′ ( x ) ] d x dy=[f'(\sin x)\cdot \cos x+e^{f(x)}\cdot f'(x)]dx dy=[f(sinx)cosx+ef(x)f(x)]dx


总结

一阶微分形式不变性,与复合函数求导有一定联系,以上练习也可以当作复合函数求导的练习。

你可能感兴趣的:(数学,数学)