框架是paddlepaddle;
单卡跑;
segformer-b5;
数据集是 voc 格式;
代码:https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.4/docs/whole_process_cn.md
环境的安装:https://blog.csdn.net/Scenery0519/article/details/128028857
在这里插入代码片export CUDA_VISIBLE_DEVICES=0 # 设置1张可用的卡
**windows下请执行以下命令**
**set CUDA_VISIBLE_DEVICES=0**
python train.py \
--config configs/segformer/segformer_b5_voc_03_10k.yml \
--do_eval \
--use_vdl \
--save_interval 500 \
--save_dir output
config 配置文件是自己新建的。
PaddleSeg/configs/segformer 中新建一个配置文件。
我是直接复制了segformer_b5_cityscapes_1024x1024_160k.yml这个文件。
新建的文件我命名为 : segformer_b5_voc_03_10k.yml
_base_: '../_base_/huangche15_voc.yml' # 1.改这里
batch_size: 1
iters: 10000 # 2.改这里
model:
type: SegFormer_B5
num_classes: 16 # 3.改这里
pretrained: https://bj.bcebos.com/paddleseg/dygraph/mix_vision_transformer_b5.tar.gz
optimizer:
_inherited_: False
type: AdamW
beta1: 0.9
beta2: 0.999
weight_decay: 0.01
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.00006
power: 1
loss:
types:
- type: CrossEntropyLoss
coef: [1]
test_config:
is_slide: True`在这里插入代码片`
crop_size: [1152, 648] # 4. 改这里
stride: [768, 512] # 5.改这里
路径:PaddleSeg/configs/_base_
参考文件:pascal_voc12.yml
新建文件:huangche15_voc.yml
也就是 segformer_b5_voc_03_10k.yml 文件中的 _base_: ‘…/_base_/huangche15_voc.yml’
batch_size: 4
iters: 40000
train_dataset:
type: Huangche15VOC # 1.改这里
dataset_root: /data/huangche_15 # 2.改这里
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1152, 648] # 3.改这里
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: Huangche15VOC # 4.改这里
dataset_root: data/huangche_15 # 5.改这里
transforms:
- type: Padding
target_size: [3840, 2160] # 6.改这里
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
end_lr: 0
power: 0.9
loss:
types:
- type: CrossEntropyLoss
coef: [1]
路径:PaddleSeg/paddleseg/datasets
参考文件: voc.py
新建文件:huangche15voc.py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from paddleseg.datasets import Dataset
from paddleseg.utils.download import download_file_and_uncompress
from paddleseg.utils import seg_env
from paddleseg.cvlibs import manager
from paddleseg.transforms import Compose
URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar"
@manager.DATASETS.add_component
class Huangche15VOC(Dataset): # 1.改这里
"""
PascalVOC2012 dataset `http://host.robots.ox.ac.uk/pascal/VOC/`.
If you want to augment the dataset, please run the voc_augment.py in tools.
Args:
transforms (list): Transforms for image.
dataset_root (str): The dataset directory. Default: None
mode (str, optional): Which part of dataset to use. it is one of ('train', 'trainval', 'trainaug', 'val').
If you want to set mode to 'trainaug', please make sure the dataset have been augmented. Default: 'train'.
edge (bool, optional): Whether to compute edge while training. Default: False
"""
NUM_CLASSES = 16 # 2.改这里
def __init__(self, transforms, dataset_root=None, mode='train', edge=False):
self.dataset_root = dataset_root
self.transforms = Compose(transforms)
mode = mode.lower()
self.mode = mode
self.file_list = list()
self.num_classes = self.NUM_CLASSES
self.ignore_index = 255
self.edge = edge
if mode not in ['train', 'trainval', 'trainaug', 'val']:
raise ValueError(
"`mode` should be one of ('train', 'trainval', 'trainaug', 'val') in PascalVOC dataset, but got {}."
.format(mode))
if self.transforms is None:
raise ValueError("`transforms` is necessary, but it is None.")
if self.dataset_root is None:
self.dataset_root = download_file_and_uncompress(
url=URL,
savepath=seg_env.DATA_HOME,
extrapath=seg_env.DATA_HOME,
extraname='VOCdevkit')
elif not os.path.exists(self.dataset_root):
self.dataset_root = os.path.normpath(self.dataset_root)
savepath, extraname = self.dataset_root.rsplit(
sep=os.path.sep, maxsplit=1)
self.dataset_root = download_file_and_uncompress(
url=URL,
savepath=savepath,
extrapath=savepath,
extraname=extraname)
image_set_dir = os.path.join(self.dataset_root, 'VOC2012', 'ImageSets',
'Segmentation')
if mode == 'train':
file_path = os.path.join(image_set_dir, 'train.txt')
elif mode == 'val':
file_path = os.path.join(image_set_dir, 'val.txt')
elif mode == 'trainval':
file_path = os.path.join(image_set_dir, 'trainval.txt')
elif mode == 'trainaug':
file_path = os.path.join(image_set_dir, 'train.txt')
file_path_aug = os.path.join(image_set_dir, 'aug.txt')
if not os.path.exists(file_path_aug):
raise RuntimeError(
"When `mode` is 'trainaug', Pascal Voc dataset should be augmented, "
"Please make sure voc_augment.py has been properly run when using this mode."
)
img_dir = os.path.join(self.dataset_root, 'VOC2012', 'JPEGImages')
label_dir = os.path.join(self.dataset_root, 'VOC2012',
'SegmentationClass')
label_dir_aug = os.path.join(self.dataset_root, 'VOC2012',
'SegmentationClassAug')
with open(file_path, 'r') as f:
for line in f:
line = line.strip()
image_path = os.path.join(img_dir, ''.join([line, '.jpg']))
label_path = os.path.join(label_dir, ''.join([line, '.png']))
self.file_list.append([image_path, label_path])
if mode == 'trainaug':
with open(file_path_aug, 'r') as f:
for line in f:
line = line.strip()
image_path = os.path.join(img_dir, ''.join([line, '.jpg']))
label_path = os.path.join(label_dir_aug,
''.join([line, '.png']))
self.file_list.append([image_path, label_path])
这个文件需要改两个地方
更改同级目录下的 _init_ 文件
from .dataset import Dataset
from .cityscapes import Cityscapes
from .voc import PascalVOC
from .huangche15voc import Huangche15VOC # 1. 更改这里
from .ade import ADE20K
from .optic_disc_seg import OpticDiscSeg
from .pascal_context import PascalContext
from .mini_deep_globe_road_extraction import MiniDeepGlobeRoadExtraction
from .eg1800 import EG1800
from .supervisely import SUPERVISELY
from .cocostuff import CocoStuff
from .stare import STARE
from .drive import DRIVE
from .hrf import HRF
from .chase_db1 import CHASEDB1
from .pp_humanseg14k import PPHumanSeg14K
from .pssl import PSSLDataset
导入新建的自己的数据集的类
在这里插入代码片export CUDA_VISIBLE_DEVICES=0 # 设置1张可用的卡
**windows下请执行以下命令**
**set CUDA_VISIBLE_DEVICES=0**
python train.py \
--config configs/segformer/segformer_b5_voc_03_10k.yml \
--do_eval \
--use_vdl \
--save_interval 500 \
--save_dir output