机器臂(二)--视觉控制关节点

   

       

在先前配置好的机器臂教程接着下做

先是视觉方面demo

手势识别的mediapipe 是谷歌开源项目 这个的主要功能是识别手势 然后封装成类给下面的控制模块调用

import cv2
import mediapipe as mp

class HandDetector:
   
    

    def __init__(self, mode=False, maxHands=2, detectionCon=0.5, minTrackCon=0.5):
       
        self.mode = mode
        self.maxHands = maxHands
        self.detectionCon = detectionCon
        self.minTrackCon = minTrackCon

        self.mpHands = mp.solutions.hands
        self.hands = self.mpHands.Hands(static_image_mode=self.mode, max_num_hands=self.maxHands,
                                        min_detection_confidence=self.detectionCon,
                                        min_tracking_confidence=self.minTrackCon)
        self.mpDraw = mp.solutions.drawing_utils
        self.tipIds = [4, 8, 12, 16, 20]
        self.fingers = []
        self.lmList = []

    def findHands(self, img, draw=True, flipType=True):
        
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        self.results = self.hands.process(imgRGB)
        allHands = []
        h, w, c = img.shape
        if self.results.multi_hand_landmarks:
            for handType, handLms in zip(self.results.multi_handedness, self.results.multi_hand_landmarks):
                myHand = {}
                ## lmList
                mylmList = []
                xList = []
                yList = []
                for id, lm in enumerate(handLms.landmark):
                    px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w)
                    mylmList.append([px, py, pz])
                    xList.append(px)
                    yList.append(py)

                ## bbox
                xmin, xmax = min(xList), max(xList)
                ymin, ymax = min(yList), max(yList)
                boxW, boxH = xmax - xmin, ymax - ymin
                bbox = xmin, ymin, boxW, boxH
                cx, cy = bbox[0] + (bbox[2] // 2), \
                         bbox[1] + (bbox[3] // 2)

                myHand["lmList"] = mylmList
                myHand["bbox"] = bbox
                myHand["center"] = (cx, cy)

                if flipType:
                    if handType.classification[0].label == "Right":
                        myHand["type"] = "Left"
                    else:
                        myHand["type"] = "Right"
                else:
                    myHand["type"] = handType.classification[0].label
                allHands.append(myHand)

                ## draw
                if draw:
                    self.mpDraw.draw_landmarks(img, handLms,
                                               self.mpHands.HAND_CONNECTIONS)
                    cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20),
                                  (bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20),
                                  (255, 0, 255), 2)
                    cv2.putText(img, myHand["type"], (bbox[0] - 30, bbox[1] - 30), cv2.FONT_HERSHEY_PLAIN,
                                2, (255, 0, 255), 2)
        if draw:
            return allHands, img
        else:
            return allHands

    def fingersUp(self, myHand):
        """
        判断多少个手指起来
        """
        myHandType = myHand["type"]
        myLmList = myHand["lmList"]
        if self.results.multi_hand_landmarks:
            fingers = []
            # Thumb
            if myHandType == "Right":
                fingers.append(0)#右手
                if myLmList[self.tipIds[0]][0] > myLmList[self.tipIds[0] - 1][0]:
                    fingers.append(1)
                else:
                    fingers.append(0)
            else:
                fingers.append(1)#左手
                if myLmList[self.tipIds[0]][0] < myLmList[self.tipIds[0] - 1][0]:
                    fingers.append(1)
                else:
                    fingers.append(0)

            # 4 Fingers
            for id in range(1, 5):
                if myLmList[self.tipIds[id]][1] < myLmList[self.tipIds[id] - 2][1]:
                    fingers.append(1)
                else:
                    fingers.append(0)
        return fingers

def main():
    cap = cv2.VideoCapture(0)
    detector = HandDetector(detectionCon=0.8, maxHands=2)
    while True:
        # Get image frame
        success, img = cap.read()
        # Find the hand and its landmarks
        hands, img = detector.findHands(img)  # with draw
        # hands = detector.findHands(img, draw=False)  # without draw

        if hands:
            # Hand 1
            hand1 = hands[0]
            lmList1 = hand1["lmList"]  # List of 21 Landmark points
            handType1 = hand1["type"]  # Handtype Left or Right
            fingers1 = detector.fingersUp(hand1)
            print(fingers1)
            if len(hands) == 2:
                # Hand 2
                hand2 = hands[1]
                lmList2 = hand2["lmList"]  # List of 21 Landmark points
                bbox2 = hand2["bbox"]  # Bounding box info x,y,w,h
                centerPoint2 = hand2['center']  # center of the hand cx,cy
                handType2 = hand2["type"]  # Hand Type "Left" or "Right"
                fingers2 = detector.fingersUp(hand2)
                print(fingers2)
        # Display
        cv2.imshow("Image", img)
        cv2.waitKey(1)


if __name__ == "__main__":
    main()

控制关节点的python demo 模块

#! /usr/bin/python3.8
# -*- coding: utf-8 -*-
from operator import ge
from time import sleep
import HandTrackingModule as Hd
import rospy
import cv2
from sensor_msgs.msg import JointState
import sys, termios

msg = """
Control Your Turtlebot!
---------------------------
Moving around:
   q    w    e   r   t   y
   a    s    d   f   g   h

j/l : increase/decrease precision by 0.05
space key, k : reset
anything else : stop smoothly
b : switch to arm_four/arm_six
precision is not less than or equal to zero
CTRL-C to quit
"""
  
mode = 0 #六自由度模式

precision = 0.05 #默认精度(rad)

#键值对应转动方向
rotateBindings = {
        'q':(1,1),#第一个关节顺时针
        'a':(1,-1),
        'w':(2,1),
        's':(2,-1),
        'e':(3,1),
        'd':(3,-1),
        'r':(4,1),
        'f':(4,-1),
        't':(5,1),
        'g':(5,-1),
        'y':(6,1),
        'h':(6,-1)
           }

#键值对应精度增量
precisionBindings={
        'j':0.01,
        'l':-0.01
          }

#以字符串格式返回当前控制精度
def prec(precision):
    return "currently:\tprecision %s " %precision
# 检测手势
def detect_hands_gesture(result):
#0 1 2 3 4 5 6 
#7 8 9 10 11 12
    if result[0]==0:
        if (result[1:] == [0,1,0,0,0]):
            gesture = "a" #
            return  gesture
        elif (result[1:] == [0,1,1,0,0]):
            gesture = "s"
            return  gesture
        elif (result[1:] == [0,0,1,1,1]):
            gesture = "d"
            return  gesture
        elif (result[1:] == [0,1,1,1,1]):
            gesture = "f"
            return  gesture
        elif (result[1:] == [1,1,1,1,1]):
            gesture = "g"
            return  gesture
        elif (result[1:] == [1,0,0,0,1]):
            gesture = "h"
            return  gesture
        elif (result[1:] == [1,1,0,0,1]):
            gesture = " " #R&K手臂直立
            return  gesture
    elif result[0]==1:
        if (result[1:] == [0,1,0,0,0]):
            gesture = "q"
            return  gesture
        elif (result[1:] == [0,1,1,0,0]):
            gesture = "w"
            return  gesture
        elif (result[1:] == [0,0,1,1,1]):
            gesture = "e"
            return  gesture
        elif (result[1:] == [0,1,1,1,1]):
            gesture = "r"
            return  gesture
        elif (result[1:] == [1,1,1,1,1]):
            gesture = "t"
            return  gesture
        elif (result[1:] == [1,0,0,0,1]):#小拇指
            gesture = "y"
            return  gesture

   
  
#主函数
if __name__=="__main__":
    settings = termios.tcgetattr(sys.stdin) #获取键值初始化,读取终端相关属性
    rospy.init_node('arm_teleop') #创建ROS节点
    pub = rospy.Publisher('/joint_states', JointState, queue_size=5) #创建机械臂状态话题发布者
    #关节1-6对应弧度状态
    joints = [0,0,0,0,0,0]

    """机械臂关节初始化"""
    jointState = JointState() #创建ROS机械臂装态话题消息变量
    jointState.header.stamp = rospy.Time.now()
    jointState.name=["joint1","joint2","joint3","joint4","joint5","joint6"]
    jointState.position=joints
    pub.publish(jointState) #ROS发布机械臂状态话题
    # 接入USB摄像头时,注意修改cap设备的编号
    cap = cv2.VideoCapture(0)
    detector = Hd.HandDetector(detectionCon=0.8, maxHands=2)
    if not cap.isOpened():
        print("Can not open camera.")
        exit()
    try:
        print(msg) #打印控制说明
        print(prec(precision)) #打印当前精度
        key = " "
        while(1):
            # Get image frame
            success, img = cap.read()
            # Find the hand and its landmarks
            hands, img = detector.findHands(img)  # with draw
            # hands = detector.findHands(img, draw=False)  # without draw
            cv2.imshow("Image", img)
            cv2.waitKey(1)
            if hands :
                 key  = detect_hands_gesture(detector.fingersUp(hands[0])) 
                    #判断键值是在控制机械臂运动的键值内
            
            if key in rotateBindings.keys():
                joints[rotateBindings[key][0]-1] = joints[rotateBindings[key][0]-1] + precision*rotateBindings[key][1]
                if joints[rotateBindings[key][0]-1]>1.57:
                            joints[rotateBindings[key][0]-1]=1.57
                elif joints[rotateBindings[key][0]-1]<-1.57:
                            joints[rotateBindings[key][0]-1]=-1.57
                    #判断键值是否在精度增量键值内
                elif key in precisionBindings.keys():
                    if (precision+precisionBindings[key])<0.01 or (precision+precisionBindings[key])>0.1:
                        pass
                    else:
                            precision+=precisionBindings[key]
                            print(prec(precision)) #精度发生变化,打印出来
                     #根据机械臂自由度给joint_states话题赋予消息
                if mode:
                        jointState.header.stamp = rospy.Time.now()
                        jointState.name=["joint1","joint2","joint3","joint4"]
                        jointState.position=joints[0:4]
                else:
                        jointState.header.stamp = rospy.Time.now()
                        jointState.name=["joint1","joint2","joint3","joint4","joint5","joint6"]
                        jointState.position=joints
                pub.publish(jointState) #ROS发布关节状态话题 
            elif key ==" ":
                  joints = [0,0,0,0,0,0]    

    #运行出现问题则程序终止并打印相关错误信息
    except Exception as e:
        print(e)
        

    #程序结束前发布速度为0的速度话题
    finally:
        print("Keyboard control off")

    #程序结束前打印消息提示
    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)

感觉判断的地方有点小拉跨

所有的python 写完记得

sudo chmod 777 *.py

启动桌面机器人的基础服务

roslaunch table_arm base_serial.launch

机器臂(二)--视觉控制关节点_第1张图片

启动

roslaunch table_arm arm_opencv_move.py

机器臂(二)--视觉控制关节点_第2张图片

机器臂直立 R&K 直立机器臂(二)--视觉控制关节点_第3张图片

 

ros_opencv_机器爪控制-2_哔哩哔哩_bilibili

    

你可能感兴趣的:(自学,ros,python,c++,linux)