椭圆方程拟合(最小二乘,matlab源代码)

1.椭圆方程定义

椭圆一般方程为
a x 2 + b x y + c y 2 + d x + e y + 1 = 0. ax^2+bxy+cy^2+dx+ey+1=0. ax2+bxy+cy2+dx+ey+1=0.

2.最小能量函数定义

要使得圆方程最为准确,则要是所有的点尽可能满足方程,因此需使函数F
F = ∑ ( a x i 2 + b x i y i + c y i 2 + d x i + e y i ) 2 , i ∈ [ 1 , N ] , N 为 点 数 目 F=\sum(a{x_i}^2+b{x_i}{y_i}+c{y_i}^2+d{x_i}+e{y_i})^2 , i\in [1,N],N为点数目 F=(axi2+bxiyi+cyi2+dxi+eyi)2,i[1,N],N

但实际上其不可能为0,因此根据最小二乘法求解其最小值
对函数F求导可得
∂ F a = ∑ 2 ( a x i 2 + b x i y i + c y i 2 + d x i + e y i ) ∗ x i 2 \frac{\partial{F}}{a} = \sum{2( a{x_i}^2+b{x_i}{y_i}+c{y_i}^2+d{x_i}+e{y_i})}*{x_i}^2 aF=2(axi2+bxiyi+cyi2+dxi+eyi)xi2

∂ F b = ∑ 2 ( a x i 2 + b x i y i + c y i 2 + d x i + e y i ) ∗ x i y i \frac{\partial{F}}{b} = \sum{2( a{x_i}^2+b{x_i}{y_i}+c{y_i}^2+d{x_i}+e{y_i})}*{x_i}{y_i} bF=2(axi2+bxiyi+cyi2+dxi+eyi)xiyi

∂ F c = ∑ 2 ( a x i 2 + b x i y i + c y i 2 + d x i + e y i ) ∗ y i 2 \frac{\partial{F}}{c} = \sum{2( a{x_i}^2+b{x_i}{y_i}+c{y_i}^2+d{x_i}+e{y_i})}*{y_i}^2 cF=2(axi2+bxiyi+cyi2+dxi+eyi)yi2

∂ F d = ∑ 2 ( a x i 2 + b x i y i + c y i 2 + d x i + e y i ) ∗ x i \frac{\partial{F}}{d} = \sum{2( a{x_i}^2+b{x_i}{y_i}+c{y_i}^2+d{x_i}+e{y_i})}*{x_i} dF=2(axi2+bxiyi+cyi2+dxi+eyi)xi

∂ F e = ∑ 2 ( a x i 2 + b x i y i + c y i 2 + d x i + e y i ) ∗ y i \frac{\partial{F}}{e} = \sum{2( a{x_i}^2+b{x_i}{y_i}+c{y_i}^2+d{x_i}+e{y_i})}*{y_i} eF=2(axi2+bxiyi+cyi2+dxi+eyi)yi

当这些导数为0是,函数最小
为方便

求解,将其写成a,b,c的矩阵函数形式,则可得
[ ∑ ( x i 4 ) ∑ ( x i 3 ∗ y i ) ∑ ( x i 2 ∗ y i 2 ) ∑ ( x i 3 ) ∑ ( y i ∗ x i 2 ) ∑ ( x i 3 ∗ y i ) ∑ ( x i 2 ∗ y i 2 ) ∑ ( x i ∗ y i 3 ) ∑ ( x i 2 ∗ y i ) ∑ ( x i ∗ y i 2 ) ∑ ( x i 2 ∗ y i 2 ) ∑ ( x i ∗ y i 3 ) ∑ ( y i 4 ) ∑ ( x i ∗ y i 2 ) ∑ ( y i 3 ) ∑ ( x i 3 ) ∑ ( x i 2 ∗ y i ) ∑ ( x i ∗ y i 2 ) ∑ ( x i 2 ) ∑ ( x i ∗ y i ) ∑ ( y i ∗ x i 2 ) ∑ ( x i ∗ y i 2 ) ∑ ( y i 3 ) ∑ ( x i ∗ y i ) ∑ ( y i 2 ) ] [ a b c d e ] = [ − ∑ ( x i 2 ) − ∑ ( x i ∗ y i ) − ∑ ( y i 2 ) − ∑ ( x i ) − ∑ ( y i ) ] \left[ \begin{matrix} \sum{({{x}_{i}}^{4})} & \sum{({{x}_{i}}^{3}*{{y}_{i}})} & \sum{({{x}_{i}}^{2}*{{y}_{i}}^{2})} & \sum{({{x}_{i}}^{3})} & \sum{({{y}_{i}}*{{x}_{i}}^{2})} \\ \sum{({{x}_{i}}^{3}*{{y}_{i}})} & \sum{({{x}_{i}}^{2}*{{y}_{i}}^{2})} & \sum{({{x}_{i}}*{{y}_{i}}^{3})} & \sum{({{x}_{i}}^{2}*{{y}_{i}})} & \sum{({{x}_{i}}*{{y}_{i}}^{2})} \\ \sum{({{x}_{i}}^{2}*{{y}_{i}}^{2})} & \sum{({{x}_{i}}*{{y}_{i}}^{3})} & \sum{({{y}_{i}}^{4})} & \sum{({{x}_{i}}*{{y}_{i}}^{2})} & \sum{({{y}_{i}}^{3})} \\ \sum{({{x}_{i}}^{3})} & \sum{({{x}_{i}}^{2}*{{y}_{i}})} & \sum{({{x}_{i}}*{{y}_{i}}^{2})} & \sum{({{x}_{i}}^{2})} & \sum{({{x}_{i}}*{{y}_{i}})} \\ \sum{({{y}_{i}}*{{x}_{i}}^{2})} & \sum{({{x}_{i}}*{{y}_{i}}^{2})} & \sum{({{y}_{i}}^{3})} & \sum{({{x}_{i}}*{{y}_{i}})} & \sum{({{y}_{i}}^{2})} \\ \end{matrix} \right]\left[ \begin{matrix} a \\ b \\ c \\ d \\ e \\ \end{matrix} \right]=\left[ \begin{matrix} -\sum{({{x}_{i}}^{2})} \\ -\sum{({{x}_{i}}*{{y}_{i}})} \\ -\sum{({{y}_{i}}^{2})} \\ -\sum{({{x}_{i}})} \\ -\sum{({{y}_{i}})} \\ \end{matrix} \right] (xi4)(xi3yi)(xi2yi2)(xi3)(yixi2)(xi3yi)(xi2yi2)(xiyi3)(xi2yi)(xiyi2)(xi2yi2)(xiyi3)(yi4)(xiyi2)(yi3)(xi3)(xi2yi)(xiyi2)(xi2)(xiyi)(yixi2)(xiyi2)(yi3)(xiyi)(yi2)abcde=(xi2)(xiyi)(yi2)(xi)(yi)

可变形为

A X = B AX=B AX=B
接下来便是求解方程AX=B

3.matlab代码

  1. 实例
% 圆拟合实例
clc;
close all;

%% 创建测试数据
num =1000;
% 噪声
rng(1);
noise1=0.2*randn(num,1);
rng(2);
noise2=0.2*randn(num,1);
% 创建初始数据
center = [10,5];
axea =3;
axeb=4;
angle= 0.2;
s = sin(angle); c = cos(angle);
Q =[c -s; s c]
theta=(2*rand(num,1)-1)*pi;
xx = axea*cos(theta);
yy = axeb*sin(theta);
x = Q(1,:)*[xx yy]' + center(1,1)+noise1';
y = Q(2,:)*[xx yy]' + center(1,2)+noise2';
x = x';
y = y';

%% 拟合椭圆
figure;
scatter(x,y);
hold on;
[a,b,c,d,e] = fit_elipse(x,y);
[centrex, centrey, axea, axeb, angle] = convertConicToParametric([a,b,c,d,e,1]);%获取的长短轴先短后长,可能发生调换
DrawConic([a,b,c,d,e,1],'b',1,1);



function [contour,center,ellipse_para] = DrawConic(C,color,lineWidth,scale)
%DRAWELLIPSE	Draw ellipse
%
%	drawellipse (z, a, b, alpha, pat{'-'}, OPTIONS{[]})
%	draws ellipse into current figure.
%
%	z, a, b, alpha: parameters of ellipse
%	pat: pattern to be used

mc = max(size(C));
if mc==6
    %equation implicite
    [centrex, centrey, axea, axeb, angle] = convertConicToParametric(C);
    ellipse_para=[centrex, centrey, axea, axeb, angle];
elseif mc==3
    par = debuildConic(C);
    [centrex, centrey, axea, axeb, angle] = convertConicToParametric(par);
elseif mc==5
    centrex = C(1);
    centrey = C(2);
    axea = C(3);
    axeb = C(4);
    angle = C(5);
else
    disp('Error in draw conic, format parametres non conforme')
    return
end
axea =scale*axea;
axeb=scale*axeb;
s = sin(angle); c = cos(angle);
Q =[c -s; s c];
theta = [0:0.02:2*pi]';
xx = axea*cos(theta);
yy = axeb*sin(theta);

x = Q(1,:)*[xx yy]' + centrex;
y = Q(2,:)*[xx yy]' + centrey;
contour=[x;y]';
plot(x,y, '-','Color',color,'LineWidth',lineWidth);

x1 = [centrex-5,centrex,centrex+5];
plot(x1,[centrey,centrey,centrey], '-','Color',color,'LineWidth',lineWidth);
y1 = [centrey-5,centrey,centrey+5];
plot([centrex,centrex,centrex],y1, '-','Color',color,'LineWidth',lineWidth);
center =[centrex,centrey];
end


function [centrex, centrey, axea, axeb, angle] = convertConicToParametric(par)
%this function will convert parameters from the form
%Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0   
%to
%centrex centrey axea axeb angle
%
%take as input :
%par = [A B C D E F]


%assure forme compatible
if size(par,1)==3
    par = debuildConic(par);
end

% Convert to geometric radii, and centers

thetarad = 0.5*atan2(par(2),par(1) - par(3));
cost = cos(thetarad);
sint = sin(thetarad);
sin_squared = sint.*sint;
cos_squared = cost.*cost;
cos_sin = sint .* cost;

Ao = par(6);
Au =   par(4) .* cost + par(5) .* sint;
Av = - par(4) .* sint + par(5) .* cost;
Auu = par(1) .* cos_squared + par(3) .* sin_squared + par(2) .* cos_sin;
Avv = par(1) .* sin_squared + par(3) .* cos_squared - par(2) .* cos_sin;


if(Auu==0 | Avv==0)
    %problem.  this is not a valid ellipse
    %make sure param are invalid and be easy to spot
    centrex = -1;
    centrey = -1;
    axea = 0;
    axeb = 0;
    angle = 0;
    return;   
end


% ROTATED = [Ao Au Av Auu Avv]

tuCentre = - Au./(2.*Auu);
tvCentre = - Av./(2.*Avv);
wCentre = Ao - Auu.*tuCentre.*tuCentre - Avv.*tvCentre.*tvCentre;

uCentre = tuCentre .* cost - tvCentre .* sint;
vCentre = tuCentre .* sint + tvCentre .* cost;

Ru = -wCentre./Auu;
Rv = -wCentre./Avv;

Ru = sqrt(abs(Ru)).*sign(Ru);
Rv = sqrt(abs(Rv)).*sign(Rv);


centrex = uCentre;
centrey = vCentre;
axea = Ru;
axeb = Rv;
angle = thetarad;
end

  1. 椭圆拟合函数
function [a,b,c,d,e] =  fit_elipse(x,y)
% function fit_circle.m
% -------------------------------------------------------------------------
% 椭圆拟合
% 椭圆方程按照ax^2+bxy+cy^2+dx+ey+1=0
% 最小化函数定义为 sum(a(x_i)^2+b(x_i)(y_i)+c(y_i)^2+d(x_i)+e(y_i)+1),i为1到n的整数
% 计算导数,化为AX=B的形式,X为[a;b;c;d;e]
% Inputs:
%       x = 点x坐标,写成(1000,1)竖排格式
%       y = 点y坐标
% Output:
%       a,b,c,d,e = 椭圆方程对应参数
% Last updated: November 14, 2022

% 数据预处理
xx = x.*x;
xxx = x.^3;
yy= y.*y;
yyy = y.^3;
xy = x.*y;

% 构建A
A1_1 = sum(x.^4);
A1_2 = sum(xxx.*y);
A1_3 = sum(xx.*yy);
A1_4 = sum(xxx);
A1_5 = sum(y.*xx);

A2_1 = A1_2;
A2_2 = sum(xx.*yy);
A2_3 = sum(x.*yyy);
A2_4 = sum(xx.*y);
A2_5 = sum(x.*yy);


A3_1 = A1_3;
A3_2 = A2_3;
A3_3 = sum(yy.*yy) ;
A3_4 = sum(x.*yy) ;
A3_5 = sum(yy.*y) ;

A4_4 = sum(xx);
A4_5 = sum(xy);
A5_5 = sum(yy);

A=[A1_1,A1_2,A1_3,A1_4,A1_5;
   A2_1,A2_2,A2_3,A2_4,A2_5;
   A3_1,A3_2,A3_3,A3_4,A3_5;
   A1_4,A2_4,A3_4,A4_4,A4_5;
   A1_5,A2_5,A3_5,A4_5,A5_5];

% 构建B
B1 = -sum(xx);
B2 = -sum(xy);
B3 = -sum(yy);
B4 = -sum(x);
B5 = -sum(y);

B = [B1;B2;B3;B4;B5];

% 计算
X = A\B;
a=X(1);
b=X(2);
c=X(3);
d=X(4);
e=X(5);

end

你可能感兴趣的:(通用算法原理,matlab)