输入当前轮廓点集,输出该轮廓点集的面积
area = contourArea(contours[t]);//计算轮廓面积
输入当前轮廓点集,第二个参数:bool closed:表示轮廓是否封闭的
输出该轮廓点集的周长
len = arcLength(contours[t], true);//计算轮廓周长
原本计算公式:
网上的公式一般是这个:e=(4π 面积)/(周长 * 周长);
这里将周长等价于2pi*r;
area = contourArea(contours[t]);//计算轮廓面积
len = arcLength(contours[t], true);//计算轮廓周长
roundness = (4 * CV_PI * area) / (len * len);//圆形度
//先计算最小外接矩形的面积:
RotatedRect minrect = minAreaRect(contours[t]); //最小外接矩形
area = contourArea(contours[t]);//计算轮廓面积
int minrectmianji = minrect.size.height * minrect.size.width;
if (minrectmianji == 0)rectangularity = 0;
else rectangularity = area / minrectmianji;
注意点:
minrect.size是个数组,表述的是尺寸即:width,height
宽长比:最小外接矩形的长轴与短轴的比值
RotatedRect rbox = minAreaRect(contours[i]);
fabs(rbox.size.width * 1.0 / rbox.size.height - 1) < 0.1 //表示宽长比在1附近+-0.1内浮动
周径比的周即周长,径是指上面找到的轮廓最小外接矩形的长的一条边
lenratio = len / (minrect.size.height > minrect.size.width ? minrect.size.height : minrect.size.width);
总结:最终示例
#include
#include
#include "windows.h"
#include
#include
#include
//#include "My_ImageProssing_base.h"
#define WINDOW_NAME "【程序窗口】" //为窗口标题定义的宏
using namespace cv;
using namespace std;
RNG g_rng(12345);
int main()
{
//改变控制台字体颜色
system("color 02");
//读取图像
Mat src_image = imread("D:\\opencv_picture_test\\阈值处理\\硬币.png", 1);
//出错判断
if (!src_image.data)
{
cout << "src image load failed!" << endl;
return -1;
}
//显示原图
namedWindow("原图", WINDOW_NORMAL);
imshow("原图", src_image);
//高斯滤波去噪声
Mat blur_image;
GaussianBlur(src_image, blur_image, Size(3, 3), 0, 0);
imshow("GaussianBlur", blur_image);
//灰度变换与二值化
Mat gray_image, binary_image;
cvtColor(blur_image, gray_image, COLOR_BGR2GRAY);
threshold(gray_image, binary_image, 100, 255, THRESH_BINARY);
imshow("binary", binary_image);
//形态学闭操作(粘合断开的区域)
Mat morph_image;
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
morphologyEx(binary_image, morph_image, MORPH_CLOSE, kernel, Point(-1, -1), 1);
imshow("morphology", morph_image);
//查找所有外轮廓
vector< vector > contours;
vector hireachy;
findContours(binary_image, contours, hireachy, RETR_EXTERNAL, CHAIN_APPROX_NONE, Point());
//定义结果图
Mat result_image = Mat::zeros(src_image.size(), CV_8UC3);
//drawContours(result_image, contours, -1, Scalar(0, 0, 255), 1, 8, hireachy);//画出所有轮廓
//初始化周长、面积、圆形度、周径比
double len = 0, area = 0, roundness = 0, lenratio = 0;
float rectangularity;
//循环找出所有符合条件的轮廓
for (size_t t = 0; t < contours.size(); t++)
{
Scalar color = Scalar(g_rng.uniform(0, 255),
g_rng.uniform(0, 255), g_rng.uniform(0, 255));//任意值
//条件:过滤掉小的干扰轮廓
Rect rect = boundingRect(contours[t]); //垂直边界最小矩形
if (rect.width < 10)
continue;
//画出找到的轮廓
drawContours(result_image, contours,t,color,1, 8, hireachy);
//绘制轮廓的最小外结矩形
RotatedRect minrect = minAreaRect(contours[t]); //最小外接矩形
int minrectmianji = minrect.size.height * minrect.size.width;
Point2f P[4]; //四个顶点坐标
minrect.points(P);
for (int j = 0; j <= 3; j++)
{
line(result_image, P[j], P[(j + 1) % 4], color, 1);
}
cout << "最小外接矩形尺寸"<< minrect.size << endl;//最小外接矩形尺寸
cout << "最小外接矩形面积" << minrectmianji << endl;//最小外接矩形尺寸
//绘制轮廓的最小外结圆
Point2f center; float radius;
minEnclosingCircle(contours[t], center, radius); //最小外接圆
circle(result_image, center, radius, color,1);
//计算面积、周长、圆形度、周径比
area = contourArea(contours[t]);//计算轮廓面积
len = arcLength(contours[t], true);//计算轮廓周长
roundness = (4 * CV_PI * area) / (len * len);//圆形度
if (minrectmianji == 0)rectangularity = 0;
else rectangularity = area / minrectmianji;
//周径比,这里的周即周长,径是指上面找到的轮廓最小外接矩形的长的一条边
lenratio = len / (minrect.size.height > minrect.size.width ? minrect.size.height : minrect.size.width);
//输出结果
cout << "轮廓" << t << ":" << endl;
cout << "周长:" << len << endl;
cout << "面积:" << area << endl;
cout << "圆形度:" << roundness << endl;
cout << "矩形度:" << rectangularity << endl;
cout << "周径比:" << lenratio << endl;
}
//显示结果
namedWindow("轮廓图", WINDOW_NORMAL);
imshow("轮廓图", result_image);
waitKey(0);
return 0;
}
原图:
轮廓效果图:
参数一览:
参考链接:
https://blog.csdn.net/Lemon_jay/article/details/89519627
https://blog.csdn.net/qq_42604176/article/details/105588018
https://blog.csdn.net/duiwangxiaomi/article/details/92565308
————————————————
来源:https://blog.csdn.net/qq_42604176/article/details/105614368