因果科学网络资源整理

因果科学网络资源整理

  • 1.研究范围
  • 2.代表人物或团队
    • 2.1国际统计学领域
    • 2.2国际计算机领域
    • 2.3国内代表人物
  • 3.经典书籍
  • 4.开源工具包
  • 5.前沿算法
    • 5.1因果发现
    • 5.2因果推断
    • 5.3因果解释
  • 6.公开数据集
  • 7.公开课
  • 8.应用案例

1.研究范围

因果科学网络资源整理_第1张图片

2.代表人物或团队

下面列举我个人关注比较多的大牛们~

2.1国际统计学领域

因果科学网络资源整理_第2张图片
从左至右依次为[超链接为大牛主页]:
Jerzy Neyman
James M. Robins
Donald B. Rubin
Tyler J. VanderWeele
Paul R. Rosenbaum

2.2国际计算机领域

因果科学网络资源整理_第3张图片
从左至右依次为[超链接为大牛主页]:

Judea pearl
Geoffrey Hinton
Yoshua Bengio
Guido W. Imbens
Susan Athey

因果科学网络资源整理_第4张图片
Elias Bareinboim

2.3国内代表人物

因果科学网络资源整理_第5张图片

从左至右依次为[超链接为大牛主页]:
耿直(北大)
周晓华(北大)
张坤(CMU)
丁鹏(Berkeley)
崔鹏(清华)

因果科学网络资源整理_第6张图片
从左至右依次为[超链接为大牛主页]:
蔡瑞初(广东工业大学)
况琨(浙大)
黄碧薇(CMU PHD )
张含望(南洋理工)
郭若诚(香港城市大学)

3.经典书籍

因果科学中文书单整理及简介
因果科学英文书单整理及简介

4.开源工具包

包名 文档 语言
causaleffect Tutorial on Causal Inference and Counterfactual Reasoning R
Tetrad TETRAD-AToolbox FOR CAUSAL DISCOVERY R
dosearch R
daggity daggity document R
pcalg For evaluation of heterogeneous treatment effect estimators on common reference as well as synthetic data R
bnlearn An experimental sandbox for causal inference and decision making in dynamics R
CausalImpact CausalImpact: Inferring causal impact using structural time-series models R
rEDM rEDM file R
DoWhy Tutorial on Causal Inference and Counterfactual Reasoning python
WhyNot An experimental sandbox for causal inference and decision making in dynamics python
CausalDiscoveryToolbox Causal Discovery Toolbox: Uncover causal relationships in Python python
Uber CausalML Causalml: Python package for causal machine learning python
JustCause For evaluation of heterogeneous treatment effect estimators on common reference as well as synthetic data python
Causal-cmd Causal-cmd document Python&JAVA

5.前沿算法

5.1因果发现

◆ Center for Causal Discovery

◆ HUAWEI Noah

◆ causal-discovery文章+算法实现(63)

5.2因果推断

参考https://github.com/rguo12/awesome-causality-algorithms

year title code
主题1 Variable Selection/Importance for Learning Causal Effects 1
2016 Variable importance through targeted causal inference R
主题2 For Individual-level Treatment Effects (ITEs) 5
2019 Adapting Neural Networks for the Estimation of Treatment Effects python
2018 GANITE: Estimation of Individualized Treatment Effects using Generative Adversarial Nets python
2018 Perfect match: A simple method for learning representations for counterfactual inference with neural networks python
2017 Causal effect inference with deep latent-variable models python
2016 Learning representations for counterfactual inference python
主题3 For Average-level Treatment Effects: ATE, ATT or ATC 2
2018 Approximate residual balancing: debiased inference of average treatment effects in high dimensions R
2016 Doubly robust matching estimators for high dimensional confounding adjustment R
主题4 For Continuous Treatment Effects 1
2020 causal-curve: A Python Causal Inference Package to Estimate Causal Dose-Response Curves python
主题5 Learning Causal Effects with Multi-cause Data 1
2018 The blessings of multiple causes python
主题6 Transfer Learning for Learning Causal Effects 1
2018 Transfer Learning for Estimating Causal Effects using Neural Networks
主题7 Instrumental Variables 2
2019 PDSLASSO: Stata module for post-selection and post-regularization OLS or IV estimation and inference stata
2017 Deep iv: A flexible approach for counterfactual prediction python
主题8 Learning Causal Effects under Spillover Effect/Interference 3
2021 Modeling the Momentum Spillover Effect for Stock Prediction via Attribute-Driven Graph Attention Networks python
2020 Causal Inference under Networked Interference
2018 Linked Causal Variational Autoencoder for Inferring Paired Spillover Effects python
主题9 Learning Causal Effects from Networked Observational Data 2
2020 Learning Individual Causal Effects from Networked Observational Data python
2019 Using embeddings to correct for unobserved confounding python
主题10 Learning Time Varying/Dependent Causal Effects 2
2018 Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks python
2014 Targeted maximum likelihood estimation for dynamic and static longitudinal marginal structural working models R
主题11 Heterogeneous Treatment Effects 3
2018 Metalearners for estimating heterogeneous treatment effects using machine learning R
2017 Estimation and inference of heterogeneous treatment effects using random forests R
2017 Some methods for heterogeneous treatment effect estimation in high-dimensions R
主题12 Recommendation 3
2021 Disentangling User Interest and Conformity for Recommendation with Causal Embedding python
2020 Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback python
2019 Doubly Robust Joint Learning for Recommendation on Data Missing Not at Random
2019 Top-k off-policy correction for a REINFORCE recommender system python
2018 Causal embeddings for recommendation python
2018 Unbiased offline recommender evaluation for missing-not-at-random implicit feedback python
2018 The Deconfounded Recommender: A Causal Inference Approach to Recommendation
2016 Recommendations as treatments: Debiasing learning and evaluation python
主题13 Natural Language Processing 3
2019 Using Text Embeddings for Causal Inference python
2018 Deconfounded lexicon induction for interpretable social science python
2018 Challenges of Using Text Classifiers for Causal Inference python
主题14 Counterfactual Fairness 1
2017 Counterfactual fairness python
主题15 Reinforcement Learning 1
2018 Deconfounding reinforcement learning in observational settings python
主题16 ** Causality and GAN** 1
2017 CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training python
主题17 Natural Language Processing 2
2018 Stable Prediction across Unknown Environments
2018 A Simple Algorithm for Invariant Prediction Julia

5.3因果解释

◆ Explaining machine learning classifiers through diverse counterfactual explanations(2019)
code python

◆ Efficient search for diverse coherent explanations
code python

◆ Counterfactual explanations without opening the black box: Automated decisions and the GDPR

6.公开数据集

IHDP1
IHDP1 (setting A) simulated
IHDP2
Twins
Job Training
ACIC Benchmark
News
TCGA

7.公开课

Course: Causal inference for statistics, social and biomedical sciences(2021)

集智学园因果专题(2020,2021)

Introduction to Causal Inference Fall 2020 (Brady Neal)

Causal Inference and Machine Learning 2019 (Guido Imbens)

Falco J. Bargagli Stoffi Harvard (Postdoctoral) / IMT (Phd)

8.应用案例

快手因果推断与实验设计

视频计量经济学因果分析工具在快手中的应用

因果推断在阿里飞猪广告算法中的实践

淘票票因果应用

中国计算机学会(CCF)-滴滴大数据联合实验室

“CCF-蚂蚁科研基金”2021年度指南发布

你可能感兴趣的:(因果科学,因果发现,因果推断,因果解释,causal)