第一部分:数据类型处理
- 数据加载
- 字段含义
- user_id:用户ID
- order_dt:购买日期
- order_product:购买产品的数量
- order_amount:购买金额
- 观察数据
- 查看数据的数据类型
- 数据中是否存储在缺失值
- 将order_dt转换成时间类型
- 查看数据的统计描述
- 计算所有用户购买商品的平均数量
- 计算所有用户购买商品的平均花费
- 在源数据中添加一列表示月份:astype('datetime64[M]')
import numpy as np
import pandas as pd
from pandas import DataFrame,Series
import matplotlib.pyplot as plt
pd.set_option('display.max_rows',100)
pd.set_option('display.max_columns',100)
pd.set_option('max_colwidth',100)
df=pd.read_csv("../data/CDNOW_master.txt",header=None,sep="\s+",names=["user_id","order_dt","order_product","order_amount"])
df
|
user_id |
order_dt |
order_product |
order_amount |
0 |
1 |
19970101 |
1 |
11.77 |
1 |
2 |
19970112 |
1 |
12.00 |
2 |
2 |
19970112 |
5 |
77.00 |
3 |
3 |
19970102 |
2 |
20.76 |
4 |
3 |
19970330 |
2 |
20.76 |
... |
... |
... |
... |
... |
69654 |
23568 |
19970405 |
4 |
83.74 |
69655 |
23568 |
19970422 |
1 |
14.99 |
69656 |
23569 |
19970325 |
2 |
25.74 |
69657 |
23570 |
19970325 |
3 |
51.12 |
69658 |
23570 |
19970326 |
2 |
42.96 |
69659 rows × 4 columns
df.info()
RangeIndex: 69659 entries, 0 to 69658
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 user_id 69659 non-null int64
1 order_dt 69659 non-null int64
2 order_product 69659 non-null int64
3 order_amount 69659 non-null float64
dtypes: float64(1), int64(3)
memory usage: 2.1 MB
df["order_dt"]=pd.to_datetime(df["order_dt"],format="%Y%m%d")
df
|
user_id |
order_dt |
order_product |
order_amount |
0 |
1 |
1997-01-01 |
1 |
11.77 |
1 |
2 |
1997-01-12 |
1 |
12.00 |
2 |
2 |
1997-01-12 |
5 |
77.00 |
3 |
3 |
1997-01-02 |
2 |
20.76 |
4 |
3 |
1997-03-30 |
2 |
20.76 |
... |
... |
... |
... |
... |
69654 |
23568 |
1997-04-05 |
4 |
83.74 |
69655 |
23568 |
1997-04-22 |
1 |
14.99 |
69656 |
23569 |
1997-03-25 |
2 |
25.74 |
69657 |
23570 |
1997-03-25 |
3 |
51.12 |
69658 |
23570 |
1997-03-26 |
2 |
42.96 |
69659 rows × 4 columns
df.describe()
|
user_id |
order_product |
order_amount |
count |
69659.000000 |
69659.000000 |
69659.000000 |
mean |
11470.854592 |
2.410040 |
35.893648 |
std |
6819.904848 |
2.333924 |
36.281942 |
min |
1.000000 |
1.000000 |
0.000000 |
25% |
5506.000000 |
1.000000 |
14.490000 |
50% |
11410.000000 |
2.000000 |
25.980000 |
75% |
17273.000000 |
3.000000 |
43.700000 |
max |
23570.000000 |
99.000000 |
1286.010000 |
df["order_dt"].astype("datetime64[M]")
0 1997-01-01
1 1997-01-01
2 1997-01-01
3 1997-01-01
4 1997-03-01
...
69654 1997-04-01
69655 1997-04-01
69656 1997-03-01
69657 1997-03-01
69658 1997-03-01
Name: order_dt, Length: 69659, dtype: datetime64[ns]
df["month"]=df["order_dt"].astype("datetime64[M]")
df.head(15)
|
user_id |
order_dt |
order_product |
order_amount |
month |
0 |
1 |
1997-01-01 |
1 |
11.77 |
1997-01-01 |
1 |
2 |
1997-01-12 |
1 |
12.00 |
1997-01-01 |
2 |
2 |
1997-01-12 |
5 |
77.00 |
1997-01-01 |
3 |
3 |
1997-01-02 |
2 |
20.76 |
1997-01-01 |
4 |
3 |
1997-03-30 |
2 |
20.76 |
1997-03-01 |
5 |
3 |
1997-04-02 |
2 |
19.54 |
1997-04-01 |
6 |
3 |
1997-11-15 |
5 |
57.45 |
1997-11-01 |
7 |
3 |
1997-11-25 |
4 |
20.96 |
1997-11-01 |
8 |
3 |
1998-05-28 |
1 |
16.99 |
1998-05-01 |
9 |
4 |
1997-01-01 |
2 |
29.33 |
1997-01-01 |
10 |
4 |
1997-01-18 |
2 |
29.73 |
1997-01-01 |
11 |
4 |
1997-08-02 |
1 |
14.96 |
1997-08-01 |
12 |
4 |
1997-12-12 |
2 |
26.48 |
1997-12-01 |
13 |
5 |
1997-01-01 |
2 |
29.33 |
1997-01-01 |
14 |
5 |
1997-01-14 |
1 |
13.97 |
1997-01-01 |
第二部分
- 用户每月花费的总金额
- 绘制曲线图展示
- 所有用户每月的产品购买量
- 所有用户每月的消费总次数
- 统计每月的消费人数
df.groupby(by="month")["order_amount"].sum()
month
1997-01-01 299060.17
1997-02-01 379590.03
1997-03-01 393155.27
1997-04-01 142824.49
1997-05-01 107933.30
1997-06-01 108395.87
1997-07-01 122078.88
1997-08-01 88367.69
1997-09-01 81948.80
1997-10-01 89780.77
1997-11-01 115448.64
1997-12-01 95577.35
1998-01-01 76756.78
1998-02-01 77096.96
1998-03-01 108970.15
1998-04-01 66231.52
1998-05-01 70989.66
1998-06-01 76109.30
Name: order_amount, dtype: float64
df.groupby(by="month")["order_amount"].sum().plot()
df.groupby(by="month")["order_product"].sum()
month
1997-01-01 19416
1997-02-01 24921
1997-03-01 26159
1997-04-01 9729
1997-05-01 7275
1997-06-01 7301
1997-07-01 8131
1997-08-01 5851
1997-09-01 5729
1997-10-01 6203
1997-11-01 7812
1997-12-01 6418
1998-01-01 5278
1998-02-01 5340
1998-03-01 7431
1998-04-01 4697
1998-05-01 4903
1998-06-01 5287
Name: order_product, dtype: int64
df.groupby(by="month")["order_product"].sum().plot()
df.groupby(by="month")["user_id"].count()
month
1997-01-01 8928
1997-02-01 11272
1997-03-01 11598
1997-04-01 3781
1997-05-01 2895
1997-06-01 3054
1997-07-01 2942
1997-08-01 2320
1997-09-01 2296
1997-10-01 2562
1997-11-01 2750
1997-12-01 2504
1998-01-01 2032
1998-02-01 2026
1998-03-01 2793
1998-04-01 1878
1998-05-01 1985
1998-06-01 2043
Name: user_id, dtype: int64
df.groupby(by="month")["user_id"].nunique()
month
1997-01-01 7846
1997-02-01 9633
1997-03-01 9524
1997-04-01 2822
1997-05-01 2214
1997-06-01 2339
1997-07-01 2180
1997-08-01 1772
1997-09-01 1739
1997-10-01 1839
1997-11-01 2028
1997-12-01 1864
1998-01-01 1537
1998-02-01 1551
1998-03-01 2060
1998-04-01 1437
1998-05-01 1488
1998-06-01 1506
Name: user_id, dtype: int64
第三部分:用户个体消费数据分析
- 用户消费总金额和消费总次数的统计描述
- 用户消费金额和消费产品数量的散点图
- 各个用户消费总金额的直方分布图(消费金额在1000之内的分布)
- 各个用户消费的总数量的直方分布图(消费商品的数量在100次之内的分布)
df.groupby(by="user_id")["order_amount"].sum()
user_id
1 11.77
2 89.00
3 156.46
4 100.50
5 385.61
...
23566 36.00
23567 20.97
23568 121.70
23569 25.74
23570 94.08
Name: order_amount, Length: 23570, dtype: float64
df.groupby(by="user_id").count()["order_dt"]
user_id
1 1
2 2
3 6
4 4
5 11
..
23566 1
23567 1
23568 3
23569 1
23570 2
Name: order_dt, Length: 23570, dtype: int64
user_amount_sum=df.groupby(by="user_id")["order_amount"].sum()
user_product_sum=df.groupby(by="user_id")["order_product"].sum()
plt.scatter(user_product_sum,user_amount_sum)
df.groupby(by="user_id").sum().query("order_amount<=1000")["order_amount"]
df.groupby(by="user_id").sum().query("order_amount<=1000")["order_amount"].hist()
df.groupby(by="user_id").sum().query("order_product<=100")["order_product"]
user_id
1 1
2 6
3 16
4 7
5 29
..
23566 2
23567 1
23568 6
23569 2
23570 5
Name: order_product, Length: 23491, dtype: int64
第四部分:用户消费行为分析
- 用户第一次消费的月份分布,和人数统计
- 绘制线形图
- 用户最后一次消费的时间分布,和人数统计
-绘制线形图
- 新老客户的占比
- 消费一次为新客户
- 消费多次为老客户
-分析出每一个用户的第一个消费和最后一次消费的时间
- agg(["func1","func2"]):对分组后的结果进行指定聚会
-分析出新老客户的消费比例
- 用户分层
- 分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm
- RFM模型设计
- R表示客户最近一次交易时间的间隔
- /np.timedelta64(1,"D"):去除days
- F表示客户购买商品的总数量,F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃
- M表示客户交易的金额,M值越大,表示客户价值越高,反之则表示客户价值越低
- 将R,F,M作用到rfm表中
- 根据价值分层,将用户分为:
- 重要价值客户
- 重要保持客户
- 重要挽留客户
df.groupby(by="user_id")["month"].min()
user_id
1 1997-01-01
2 1997-01-01
3 1997-01-01
4 1997-01-01
5 1997-01-01
...
23566 1997-03-01
23567 1997-03-01
23568 1997-03-01
23569 1997-03-01
23570 1997-03-01
Name: month, Length: 23570, dtype: datetime64[ns]
df.groupby(by="user_id")["month"].min().value_counts()
1997-02-01 8476
1997-01-01 7846
1997-03-01 7248
Name: month, dtype: int64
df.groupby(by="user_id")["month"].min().value_counts().plot()
df.groupby(by="user_id")["month"].max().value_counts()
1997-02-01 4912
1997-03-01 4478
1997-01-01 4192
1998-06-01 1506
1998-05-01 1042
1998-03-01 993
1998-04-01 769
1997-04-01 677
1997-12-01 620
1997-11-01 609
1998-02-01 550
1998-01-01 514
1997-06-01 499
1997-07-01 493
1997-05-01 480
1997-10-01 455
1997-09-01 397
1997-08-01 384
Name: month, dtype: int64
df.groupby(by="user_id")["month"].max().value_counts().plot()
new_old_user=df.groupby(by="user_id")["month"].agg(["min","max"])
(new_old_user["min"]==new_old_user["max"]).value_counts()
True 12755
False 10815
dtype: int64
rfm=df.pivot_table(index="user_id",aggfunc={"order_product":"sum","order_amount":"sum","order_dt":"max"})
rfm
|
order_amount |
order_dt |
order_product |
user_id |
|
|
|
1 |
11.77 |
1997-01-01 |
1 |
2 |
89.00 |
1997-01-12 |
6 |
3 |
156.46 |
1998-05-28 |
16 |
4 |
100.50 |
1997-12-12 |
7 |
5 |
385.61 |
1998-01-03 |
29 |
... |
... |
... |
... |
23566 |
36.00 |
1997-03-25 |
2 |
23567 |
20.97 |
1997-03-25 |
1 |
23568 |
121.70 |
1997-04-22 |
6 |
23569 |
25.74 |
1997-03-25 |
2 |
23570 |
94.08 |
1997-03-26 |
5 |
23570 rows × 3 columns
max_dt=df["order_dt"].max()
max_dt-df.groupby(by="user_id")["order_dt"].max()
rfm["R"]=(max_dt-df.groupby(by="user_id")["order_dt"].max())/np.timedelta64(1,"D")
rfm.drop(labels="order_dt",axis=1,inplace=True)
rfm.columns=["M","F","R"]
rfm
|
M |
F |
R |
user_id |
|
|
|
1 |
11.77 |
1 |
545.0 |
2 |
89.00 |
6 |
534.0 |
3 |
156.46 |
16 |
33.0 |
4 |
100.50 |
7 |
200.0 |
5 |
385.61 |
29 |
178.0 |
... |
... |
... |
... |
23566 |
36.00 |
2 |
462.0 |
23567 |
20.97 |
1 |
462.0 |
23568 |
121.70 |
6 |
434.0 |
23569 |
25.74 |
2 |
462.0 |
23570 |
94.08 |
5 |
461.0 |
23570 rows × 3 columns
rfm.apply(lambda x: x-x.mean())
|
M |
F |
R |
user_id |
|
|
|
1 |
-94.310426 |
-6.122656 |
177.778362 |
2 |
-17.080426 |
-1.122656 |
166.778362 |
3 |
50.379574 |
8.877344 |
-334.221638 |
4 |
-5.580426 |
-0.122656 |
-167.221638 |
5 |
279.529574 |
21.877344 |
-189.221638 |
... |
... |
... |
... |
23566 |
-70.080426 |
-5.122656 |
94.778362 |
23567 |
-85.110426 |
-6.122656 |
94.778362 |
23568 |
15.619574 |
-1.122656 |
66.778362 |
23569 |
-80.340426 |
-5.122656 |
94.778362 |
23570 |
-12.000426 |
-2.122656 |
93.778362 |
23570 rows × 3 columns
def rfm_func(x):
level=x.map(lambda x:"1" if x>0 else "0")
label=level.R+level.F+level.M
d={
"111":"重要价值客户",
"011":"重要保持客户",
"101":"重要挽留客户",
"001":"重要发展客户",
"110":"一般价值客户",
"010":"一般保持客户",
"100":"一般挽留客户",
"000":"一般发展客户",
}
result=d[label]
return result
rfm["label"]=rfm.apply(lambda x: x-x.mean()).apply(rfm_func,axis=1)
rfm.head(15)
|
M |
F |
R |
label |
user_id |
|
|
|
|
1 |
11.77 |
1 |
545.0 |
一般挽留客户 |
2 |
89.00 |
6 |
534.0 |
一般挽留客户 |
3 |
156.46 |
16 |
33.0 |
重要保持客户 |
4 |
100.50 |
7 |
200.0 |
一般发展客户 |
5 |
385.61 |
29 |
178.0 |
重要保持客户 |
6 |
20.99 |
1 |
545.0 |
一般挽留客户 |
7 |
264.67 |
18 |
100.0 |
重要保持客户 |
8 |
197.66 |
18 |
93.0 |
重要保持客户 |
9 |
95.85 |
6 |
22.0 |
一般发展客户 |
10 |
39.31 |
3 |
525.0 |
一般挽留客户 |
11 |
58.55 |
4 |
130.0 |
一般发展客户 |
12 |
57.06 |
4 |
545.0 |
一般挽留客户 |
13 |
72.94 |
4 |
545.0 |
一般挽留客户 |
14 |
29.92 |
2 |
545.0 |
一般挽留客户 |
15 |
52.87 |
4 |
545.0 |
一般挽留客户 |
第五部分:用户的生命周期
- 将用户划分为活跃用户和其他用户
- 统计每个用户每个月的消费次数
- 统计每个用户每个月是否消费,消费记录为1否则为0
- 知识点:DataFrame的apply和applymap的区别
- applymap:返回df
- 将函数做用于DataFrame中的所有元素(elements)
- apply:返回Series
- apply()将一个函数作用于DataFrame中的每列或者列
- 将用户按照每一个月份分成:
- unreq:观望用户(前两月没买,第三个月才第一次买,则用户前两个月为观望用户)
- unactive:首月购买后,后续月份没有购买则在购买的月份中该用户为非活跃用户
- new:当前月就进行首次购买的用户在当前月为新用户
- return:购买之后间隔n月再次购买的第一个月份为该月份的回头客
user_month_count_df=df.pivot_table(index="user_id",values="order_dt",aggfunc="count",columns="month").fillna(0)
user_month_count_df
month |
1997-01-01 |
1997-02-01 |
1997-03-01 |
1997-04-01 |
1997-05-01 |
1997-06-01 |
1997-07-01 |
1997-08-01 |
1997-09-01 |
1997-10-01 |
1997-11-01 |
1997-12-01 |
1998-01-01 |
1998-02-01 |
1998-03-01 |
1998-04-01 |
1998-05-01 |
1998-06-01 |
user_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
2 |
2.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
3 |
1.0 |
0.0 |
1.0 |
1.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
2.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
1.0 |
0.0 |
4 |
2.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
1.0 |
0.0 |
0.0 |
0.0 |
1.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
5 |
2.0 |
1.0 |
0.0 |
1.0 |
1.0 |
1.0 |
1.0 |
0.0 |
1.0 |
0.0 |
0.0 |
2.0 |
1.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
23566 |
0.0 |
0.0 |
1.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
23567 |
0.0 |
0.0 |
1.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
23568 |
0.0 |
0.0 |
1.0 |
2.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
23569 |
0.0 |
0.0 |
1.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
23570 |
0.0 |
0.0 |
2.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
23570 rows × 18 columns
df_purchase=user_month_count_df.applymap(lambda x: 1 if x>=1 else 0)
df_purchase
month |
1997-01-01 |
1997-02-01 |
1997-03-01 |
1997-04-01 |
1997-05-01 |
1997-06-01 |
1997-07-01 |
1997-08-01 |
1997-09-01 |
1997-10-01 |
1997-11-01 |
1997-12-01 |
1998-01-01 |
1998-02-01 |
1998-03-01 |
1998-04-01 |
1998-05-01 |
1998-06-01 |
user_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
4 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
23566 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
23567 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
23568 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
23569 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
23570 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
23570 rows × 18 columns
def active_status(data):
status=[]
for i in range(18):
if data[i]==0:
if len(status)>0:
if status[i-1]=="unreg":
status.append("unreg")
else:
status.append("unactive")
else:
status.append("unreg")
else:
if len(status)==0:
status.append("new")
else:
if status[i-1]=="unactive":
status.append("return")
elif status[i-1]=="unreg":
status.append("new")
else:
status.append("active")
return status
pivoted_status=df_purchase.apply(active_status,axis=1)
pivoted_status.head(10)
user_id
1 [new, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, ...
2 [new, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, ...
3 [new, unactive, return, active, unactive, unactive, unactive, unactive, unactive, unactive, retu...
4 [new, unactive, unactive, unactive, unactive, unactive, unactive, return, unactive, unactive, un...
5 [new, active, unactive, return, active, active, active, unactive, return, unactive, unactive, re...
6 [new, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, ...
7 [new, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, return, un...
8 [new, active, unactive, unactive, unactive, return, active, unactive, unactive, unactive, return...
9 [new, unactive, unactive, unactive, return, unactive, unactive, unactive, unactive, unactive, un...
10 [new, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, unactive, ...
dtype: object
pivoted_status.values.tolist()
df_purchase_new=DataFrame(data=pivoted_status.values.tolist(),index=df_purchase.index,columns=df_purchase.columns)
df_purchase_new
month |
1997-01-01 |
1997-02-01 |
1997-03-01 |
1997-04-01 |
1997-05-01 |
1997-06-01 |
1997-07-01 |
1997-08-01 |
1997-09-01 |
1997-10-01 |
1997-11-01 |
1997-12-01 |
1998-01-01 |
1998-02-01 |
1998-03-01 |
1998-04-01 |
1998-05-01 |
1998-06-01 |
user_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
new |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
2 |
new |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
3 |
new |
unactive |
return |
active |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
return |
unactive |
unactive |
unactive |
unactive |
unactive |
return |
unactive |
4 |
new |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
return |
unactive |
unactive |
unactive |
return |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
5 |
new |
active |
unactive |
return |
active |
active |
active |
unactive |
return |
unactive |
unactive |
return |
active |
unactive |
unactive |
unactive |
unactive |
unactive |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
23566 |
unreg |
unreg |
new |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
23567 |
unreg |
unreg |
new |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
23568 |
unreg |
unreg |
new |
active |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
23569 |
unreg |
unreg |
new |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
23570 |
unreg |
unreg |
new |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
unactive |
23570 rows × 18 columns
purchase_status_ct=df_purchase_new.apply(lambda x:pd.value_counts(x)).fillna(0)
purchase_status_ct
month |
1997-01-01 |
1997-02-01 |
1997-03-01 |
1997-04-01 |
1997-05-01 |
1997-06-01 |
1997-07-01 |
1997-08-01 |
1997-09-01 |
1997-10-01 |
1997-11-01 |
1997-12-01 |
1998-01-01 |
1998-02-01 |
1998-03-01 |
1998-04-01 |
1998-05-01 |
1998-06-01 |
active |
0.0 |
1157.0 |
1681.0 |
1773.0 |
852.0 |
747.0 |
746.0 |
604.0 |
528.0 |
532.0 |
624.0 |
632.0 |
512.0 |
472.0 |
571.0 |
518.0 |
459.0 |
446.0 |
new |
7846.0 |
8476.0 |
7248.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
return |
0.0 |
0.0 |
595.0 |
1049.0 |
1362.0 |
1592.0 |
1434.0 |
1168.0 |
1211.0 |
1307.0 |
1404.0 |
1232.0 |
1025.0 |
1079.0 |
1489.0 |
919.0 |
1029.0 |
1060.0 |
unactive |
0.0 |
6689.0 |
14046.0 |
20748.0 |
21356.0 |
21231.0 |
21390.0 |
21798.0 |
21831.0 |
21731.0 |
21542.0 |
21706.0 |
22033.0 |
22019.0 |
21510.0 |
22133.0 |
22082.0 |
22064.0 |
unreg |
15724.0 |
7248.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
purchase_status_ct.T
|
active |
new |
return |
unactive |
unreg |
month |
|
|
|
|
|
1997-01-01 |
0.0 |
7846.0 |
0.0 |
0.0 |
15724.0 |
1997-02-01 |
1157.0 |
8476.0 |
0.0 |
6689.0 |
7248.0 |
1997-03-01 |
1681.0 |
7248.0 |
595.0 |
14046.0 |
0.0 |
1997-04-01 |
1773.0 |
0.0 |
1049.0 |
20748.0 |
0.0 |
1997-05-01 |
852.0 |
0.0 |
1362.0 |
21356.0 |
0.0 |
1997-06-01 |
747.0 |
0.0 |
1592.0 |
21231.0 |
0.0 |
1997-07-01 |
746.0 |
0.0 |
1434.0 |
21390.0 |
0.0 |
1997-08-01 |
604.0 |
0.0 |
1168.0 |
21798.0 |
0.0 |
1997-09-01 |
528.0 |
0.0 |
1211.0 |
21831.0 |
0.0 |
1997-10-01 |
532.0 |
0.0 |
1307.0 |
21731.0 |
0.0 |
1997-11-01 |
624.0 |
0.0 |
1404.0 |
21542.0 |
0.0 |
1997-12-01 |
632.0 |
0.0 |
1232.0 |
21706.0 |
0.0 |
1998-01-01 |
512.0 |
0.0 |
1025.0 |
22033.0 |
0.0 |
1998-02-01 |
472.0 |
0.0 |
1079.0 |
22019.0 |
0.0 |
1998-03-01 |
571.0 |
0.0 |
1489.0 |
21510.0 |
0.0 |
1998-04-01 |
518.0 |
0.0 |
919.0 |
22133.0 |
0.0 |
1998-05-01 |
459.0 |
0.0 |
1029.0 |
22082.0 |
0.0 |
1998-06-01 |
446.0 |
0.0 |
1060.0 |
22064.0 |
0.0 |