CasRel关系抽取项目

任务描述:

 任务目标为使用深度学习算法,通过对输入文本进行分析,得到文本中主体、客体和其之间对应的关系。本项目采用主体预测和关系预测两个模块。用bert分词之后词向量先预测主题subject位置,然后将预测位置的词向量加到整个句子的词向量得到新的词向量,通过新的词向量来预测此主体对应的客体和其对应关系。
CasRel关系抽取项目_第1张图片

数据集

 本项目采用百度中文关系抽取数据集 DuIE 2.0。数据集包括48个已定义好的关系schema,43个简单知识schema,5个复杂知识的schema。其中predicate为48个主客体之间的关系。
CasRel关系抽取项目_第2张图片
训练样本格式为:text和sop_list两部分组成,每行为一个样本。

在这里插入图片描述

第一步:数据预处理

 由于可能输入文本采用中英文混合,若bert分词方式采用中文的话其文本中的英文则被识别为< UNK>,预测位置不能和文本中英文位置对应。所以在原本的训练集样本后还要加上offset_mapping,其第一步处理后的数据结构为:在这里插入图片描述
再次整理数据,只留下文本,分词id,offset_mapping,主体的头尾,文本中三元组关系(主体,关系,客体)和三元组关系的id值。
CasRel关系抽取项目_第3张图片
 最后按批量对数据进行读取,按一个批量中最长的句子进行填充,返回三部分。batch_mask为填充的mask;batch_text为上图中的text文本、文本i分词后的id值、offset_mapping值和文本元组关系;batch_sub_rnd为一句话中的随机选择的一个主体;batch_sub为这句话中的所有主体;batch_obj_rel为随机选择的那个主体对应的客体和关系矩阵。其目的是:通过batch_text来预测全部主体batch_sub,通过一句话中的某一个主体batch_sub_rnd来预测这个主体对应的客体和关系矩阵batch_obj_rel。
CasRel关系抽取项目_第4张图片

class Dataset(data.Dataset):
    def __init__(self, type='train'):
        super().__init__()
        _, self.rel2id = get_rel()
        # 加载文件
        if type == 'train':
            file_path = TRAIN_JSON_PATH
        elif type == 'test':
            file_path = TEST_JSON_PATH
        elif type == 'dev':
            file_path = DEV_JSON_PATH
        with open(file_path, encoding='UTF-8') as f:
            self.lines = f.readlines()
        # 加载bert
        self.tokenizer = BertTokenizerFast.from_pretrained(BERT_MODEL_NAME)

    def __len__(self):
        return len(self.lines)

    def __getitem__(self, index):
        line = self.lines[index]
        info = json.loads(line)
        tokenized = self.tokenizer(info['text'], return_offsets_mapping=True)
        info['input_ids'] = tokenized['input_ids']
        info['offset_mapping'] = tokenized['offset_mapping']
        return self.parse_json(info)

    def parse_json(self, info):
        text = info['text']
        input_ids = info['input_ids']
        dct = {
            'text': text,
            'input_ids': input_ids,
            'offset_mapping': info['offset_mapping'],
            'sub_head_ids': [],
            'sub_tail_ids': [],
            'triple_list': [],
            'triple_id_list': []
        }
        for spo in info['spo_list']:
            subject = spo['subject']
            object = spo['object']['@value']
            predicate = spo['predicate']
            dct['triple_list'].append((subject, predicate, object))
            # 计算 subject 实体位置
            tokenized = self.tokenizer(subject, add_special_tokens=False)
            sub_token = tokenized['input_ids']
            sub_pos_id = self.get_pos_id(input_ids, sub_token)
            if not sub_pos_id:
                continue
            sub_head_id, sub_tail_id = sub_pos_id
            # 计算 object 实体位置
            tokenized = self.tokenizer(object, add_special_tokens=False)
            obj_token = tokenized['input_ids']
            obj_pos_id = self.get_pos_id(input_ids, obj_token)
            if not obj_pos_id:
                continue
            obj_head_id, obj_tail_id = obj_pos_id
            # 数据组装
            dct['sub_head_ids'].append(sub_head_id)
            dct['sub_tail_ids'].append(sub_tail_id)
            dct['triple_id_list'].append((
                [sub_head_id, sub_tail_id],
                self.rel2id[predicate],
                [obj_head_id, obj_tail_id],
            ))
        return dct

    def get_pos_id(self, source, elem):
        for head_id in range(len(source)):
            tail_id = head_id + len(elem)
            if source[head_id:tail_id] == elem:
                return head_id, tail_id - 1

    def collate_fn(self, batch):
        batch.sort(key=lambda x: len(x['input_ids']), reverse=True)
        max_len = len(batch[0]['input_ids'])
        batch_text = {
            'text': [],
            'input_ids': [],
            'offset_mapping': [],
            'triple_list': [],
        }
        batch_mask = []
        batch_sub = {
            'heads_seq': [],
            'tails_seq': [],
        }
        batch_sub_rnd = {
            'head_seq': [],
            'tail_seq': [],
        }
        batch_obj_rel = {
            'heads_mx': [],
            'tails_mx': [],
        }

        for item in batch:
            input_ids = item['input_ids']
            item_len = len(input_ids)
            pad_len = max_len - item_len
            input_ids = input_ids + [0] * pad_len
            mask = [1] * item_len + [0] * pad_len
            # 填充subject位置
            sub_heads_seq = multihot(max_len, item['sub_head_ids'])
            sub_tails_seq = multihot(max_len, item['sub_tail_ids'])
            # 随机选择一个subject
            if len(item['triple_id_list']) == 0:
                continue
            sub_rnd = random.choice(item['triple_id_list'])[0]
            sub_rnd_head_seq = multihot(max_len, [sub_rnd[0]])
            sub_rnd_tail_seq = multihot(max_len, [sub_rnd[1]])
            # 根据随机subject计算relations矩阵
            obj_head_mx = [[0] * REL_SIZE for _ in range(max_len)]
            obj_tail_mx = [[0] * REL_SIZE for _ in range(max_len)]
            for triple in item['triple_id_list']:
                rel_id = triple[1]
                head_id, tail_id = triple[2]
                if triple[0] == sub_rnd:
                    obj_head_mx[head_id][rel_id] = 1
                    obj_tail_mx[tail_id][rel_id] = 1
            # 重新组装
            batch_text['text'].append(item['text'])
            batch_text['input_ids'].append(input_ids)
            batch_text['offset_mapping'].append(item['offset_mapping'])
            batch_text['triple_list'].append(item['triple_list'])
            batch_mask.append(mask)
            batch_sub['heads_seq'].append(sub_heads_seq)
            batch_sub['tails_seq'].append(sub_tails_seq)
            batch_sub_rnd['head_seq'].append(sub_rnd_head_seq)
            batch_sub_rnd['tail_seq'].append(sub_rnd_tail_seq)
            batch_obj_rel['heads_mx'].append(obj_head_mx)
            batch_obj_rel['tails_mx'].append(obj_tail_mx)

        return batch_mask, (batch_text, batch_sub_rnd), (batch_sub, batch_obj_rel)

第二步:构建模型

 模型都是根据bert分词加上线性层来进行预测,输入为整个句子id值和句中某个主体的头和尾。对主体sub部分的预测,先将整个句子的id值input_ids进行bert转化为bert输出值encoded_text,再经过linear层进行预测;对客体和关系矩阵预测则将句中某个主体的头尾分别乘整个句子的encoded_text,再将其与encoded_text相加来经过linear层预测某个关系的客体头和尾,遍历所有关系即可得到整个客体关系矩阵obj_rel。
CasRel关系抽取项目_第5张图片

class CasRel(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = BertModel.from_pretrained(BERT_MODEL_NAME)
        # 冻结Bert参数,只训练下游模型
        for name, param in self.bert.named_parameters():
            param.requires_grad = False
        self.sub_head_linear = nn.Linear(BERT_DIM, 1)
        self.sub_tail_linear = nn.Linear(BERT_DIM, 1)
        self.obj_head_linear = nn.Linear(BERT_DIM, REL_SIZE)
        self.obj_tail_linear = nn.Linear(BERT_DIM, REL_SIZE)

    def get_encoded_text(self, input_ids, mask):
        return self.bert(input_ids, attention_mask=mask)[0]

    def get_subs(self, encoded_text):
        pred_sub_head = torch.sigmoid(self.sub_head_linear(encoded_text))
        pred_sub_tail = torch.sigmoid(self.sub_tail_linear(encoded_text))
        return pred_sub_head, pred_sub_tail

    def get_objs_for_specific_sub(self, encoded_text, sub_head_seq, sub_tail_seq):
        # sub_head_seq.shape (b, c) -> (b, 1, c)
        sub_head_seq = sub_head_seq.unsqueeze(1).float()
        sub_tail_seq = sub_tail_seq.unsqueeze(1).float()

        # encoded_text.shape (b, c, 768)
        sub_head = torch.matmul(sub_head_seq, encoded_text)
        sub_tail = torch.matmul(sub_tail_seq, encoded_text)
        encoded_text = encoded_text + (sub_head + sub_tail) / 2

        # encoded_text.shape (b, c, 768)
        pred_obj_head = torch.sigmoid(self.obj_head_linear(encoded_text))
        pred_obj_tail = torch.sigmoid(self.obj_tail_linear(encoded_text))

        # shape (b, c, REL_SIZE)
        return pred_obj_head, pred_obj_tail

    def forward(self, input, mask):
        input_ids, sub_head_seq, sub_tail_seq = input
        encoded_text = self.get_encoded_text(input_ids, mask)
        pred_sub_head, pred_sub_tail = self.get_subs(encoded_text)
        
        # 预测relation-object矩阵
        pred_obj_head, pred_obj_tail = self.get_objs_for_specific_sub(\
            encoded_text, sub_head_seq, sub_tail_seq)

        return encoded_text, (pred_sub_head, pred_sub_tail, pred_obj_head, pred_obj_tail)

第三步:训练网络

 拿到dataset和model之后就可以进行网络模型的训练,其损失函数为预测主体sub的损失和客体与关系obj_rel损失两部分的加和。但预测主体是预测后面的先决条件故在主体上的罚要增大,而由于预测数据中01分布不均衡,为了预测出更多的1,我们需要在预测为0的后面再乘上权重来增大预测为1的概率。

def loss_fn(self, true_y, pred_y, mask):
    def calc_loss(pred, true, mask):
        true = true.float()
        # pred.shape (b, c, 1) -> (b, c)
        pred = pred.squeeze(-1)
        weight = torch.where(true > 0, CLS_WEIGHT_COEF[1], CLS_WEIGHT_COEF[0])
        loss = F.binary_cross_entropy(pred, true, weight=weight, reduction='none')
        if loss.shape != mask.shape:
            mask = mask.unsqueeze(-1)
        return torch.sum(loss * mask) / torch.sum(mask)

    pred_sub_head, pred_sub_tail, pred_obj_head, pred_obj_tail = pred_y
    true_sub_head, true_sub_tail, true_obj_head, true_obj_tail = true_y

    return calc_loss(pred_sub_head, true_sub_head, mask) * SUB_WEIGHT_COEF + \
        calc_loss(pred_sub_tail, true_sub_tail, mask) * SUB_WEIGHT_COEF + \
            calc_loss(pred_obj_head, true_obj_head, mask) + \
                calc_loss(pred_obj_tail, true_obj_tail, mask)

定好损失函数后就可以进行反向梯度更新了。

model = CasRel().to(DEVICE)

optimizer = torch.optim.Adam(model.parameters(), lr=LR)

dataset = Dataset()
for e in range(EPOCH):
    loader = data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=dataset.collate_fn)
    for b, (batch_mask, batch_x, batch_y) in enumerate(loader):
        batch_text, batch_sub_rnd = batch_x
        batch_sub, batch_obj_rel = batch_y

        # 整理input数据并预测
        input_mask = torch.tensor(batch_mask).to(DEVICE)
        input = (
            torch.tensor(batch_text['input_ids']).to(DEVICE),
            torch.tensor(batch_sub_rnd['head_seq']).to(DEVICE),
            torch.tensor(batch_sub_rnd['tail_seq']).to(DEVICE),
        )
        
        encoded_text, pred_y = model(input, input_mask)

        # 整理target数据并计算损失
        true_y = (
            torch.tensor(batch_sub['heads_seq']).to(DEVICE),
            torch.tensor(batch_sub['tails_seq']).to(DEVICE),
            torch.tensor(batch_obj_rel['heads_mx']).to(DEVICE),
            torch.tensor(batch_obj_rel['tails_mx']).to(DEVICE),
        )
        loss = model.loss_fn(true_y, pred_y, input_mask)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if b % 50 == 0:
            print('>> epoch:', e, 'batch:', b, 'loss:', loss.item())

    if e % 3 == 0:
        torch.save(model, MODEL_DIR + f'model_{e}.pth') 

在kaggle云gpu上进行训练50个eopch。

第四步:模型评估

 经过50个eopch后获得模型,下载模型到本地进心模型评估。

model = torch.load(MODEL_DIR + f'model_27.pth', map_location=DEVICE)

    dataset = Dataset('dev')

    with torch.no_grad():

    loader = data.DataLoader(dataset, batch_size=2, shuffle=False, collate_fn=dataset.collate_fn)
    
    correct_num, predict_num, gold_num = 0, 0, 0
    pred_triple_list = []
    true_triple_list = []
    
    for b, (batch_mask, batch_x, batch_y) in enumerate(loader):
        batch_text, batch_sub_rnd = batch_x
        batch_sub, batch_obj_rel = batch_y

        # 整理input数据并预测
        input_mask = torch.tensor(batch_mask).to(DEVICE)
        input = (
            torch.tensor(batch_text['input_ids']).to(DEVICE),
            torch.tensor(batch_sub_rnd['head_seq']).to(DEVICE),
            torch.tensor(batch_sub_rnd['tail_seq']).to(DEVICE),
        )
        encoded_text, pred_y = model(input, input_mask)

        # 整理target数据并计算损失
        true_y = (
            torch.tensor(batch_sub['heads_seq']).to(DEVICE),
            torch.tensor(batch_sub['tails_seq']).to(DEVICE),
            torch.tensor(batch_obj_rel['heads_mx']).to(DEVICE),
            torch.tensor(batch_obj_rel['tails_mx']).to(DEVICE),
        )
        loss = model.loss_fn(true_y, pred_y, input_mask)

        print('>> batch:', b, 'loss:', loss.item())

        # 计算关系三元组,和统计指标
        pred_sub_head, pred_sub_tail, _, _ = pred_y
        true_triple_list += batch_text['triple_list']
        
        # 遍历batch
        for i in range(len(pred_sub_head)):
            text = batch_text['text'][i]
            true_triple_item = true_triple_list[i]
            mask = batch_mask[i]
            offset_mapping = batch_text['offset_mapping'][i]

            sub_head_ids = torch.where(pred_sub_head[i] > SUB_HEAD_BAR)[0]
            sub_tail_ids = torch.where(pred_sub_tail[i] > SUB_TAIL_BAR)[0]

            pred_triple_item = get_triple_list(sub_head_ids, sub_tail_ids, model, \
                encoded_text[i], text, mask, offset_mapping)

            # 统计个数
            correct_num += len(set(true_triple_item) & set(pred_triple_item))
            predict_num += len(set(pred_triple_item))
            gold_num += len(set(true_triple_item))

            pred_triple_list.append(pred_triple_item)

    precision = correct_num / (predict_num + EPS)
    recall = correct_num / (gold_num + EPS)
    f1_score = 2 * precision * recall / (precision + recall + EPS)
    print('\tcorrect_num:', correct_num, 'predict_num:', predict_num, 'gold_num:', gold_num)
    print('\tprecision:%.3f' % precision, 'recall:%.3f' % recall, 'f1_score:%.3f' % f1_score)

你可能感兴趣的:(人工智能,深度学习)