839. Optimal Marks - SPOJ

You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.

For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].

Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.

Input

The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.

First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.

Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.

Output

For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.

Example

Input:

1

3 2

1 2

2 3

2

1 5

3 100



Output:

5

4

100 

详情请见胡伯涛的论文

经典最小割模型

首先我们分位处理,因为每一位都是独立的,互不影响,然后每个点就变成0或1

再想一下割集的定义,割集把一个图分成了两块,而割集就是这两块之间的连边(好吧,这是我乱编的.....)

xor正好是值不同才会贡献答案,于是建立最小割模型

设一个源s,向确定是1的点连容量为inf的边(因为他不能贡献答案,不能让他成为最小割)

设一个汇t,从确定是0的点向汇连容量为inf的边,理由同上

其他不确定的点就和所有的点(除了s和t)连容量为1的边(双向都要连)

然后跑最大流,也就是最小割

然后我们看这个割集,他把图分成了两部分,最后与s在一起的就是最后为1的(即在残留网络上可以从s走到他),不与s在一起的就是最后为0的,因为是最小割,所以是代价最小的

然后我们要让总和最小,其实我们已经做到了

与s在一起的必须是1,可以画图看一看,不与s在一起的不一定选1,为了和最小,就选0

每一位做一次,最后输出答案就行了

  1 const

  2     maxn=505;

  3     inf=100000;

  4 var

  5     t,si,ti,n,m,step,time:longint;

  6     flag:array[0..maxn]of boolean;

  7     tu:array[0..maxn,0..maxn]of boolean;

  8     map:array[0..maxn,0..maxn]of longint;

  9     a,dis,vh,his,pre,vis:array[0..maxn]of longint;

 10 

 11 procedure sap;

 12 var

 13     i,j,min,aug:longint;

 14     flag:boolean;

 15 begin

 16     fillchar(dis,sizeof(dis),0);

 17     fillchar(vh,sizeof(vh),0);

 18     i:=si;

 19     vh[0]:=n+2;

 20     aug:=inf;

 21     while dis[i]<n+2 do

 22       begin

 23         his[i]:=aug;

 24         flag:=false;

 25         for j:=1 to ti do

 26           if tu[i,j] then

 27           if (map[i,j]>0) and (dis[i]=dis[j]+1) then

 28           begin

 29             if aug>map[i,j] then aug:=map[i,j];

 30             flag:=true;

 31             pre[j]:=i;

 32             i:=j;

 33             if i=ti then

 34             begin

 35               while i<>si do

 36                 begin

 37                   inc(map[i,pre[i]]);

 38                   dec(map[pre[i],i]);

 39                   i:=pre[i];

 40                 end;

 41               aug:=inf;

 42             end;

 43             break;

 44           end;

 45         if flag then continue;

 46         min:=n+1;

 47         for j:=1 to ti do

 48           if tu[i,j] then

 49           if (map[i,j]>0) and (dis[j]<min) then min:=dis[j];

 50         dec(vh[dis[i]]);

 51         if vh[dis[i]]=0 then break;

 52         dis[i]:=min+1;

 53         inc(vh[dis[i]]);

 54         if i<>si then

 55         begin

 56           i:=pre[i];

 57           aug:=his[i];

 58         end;

 59       end;

 60 end;

 61 

 62 procedure dfs(x:longint);

 63 var

 64     i:longint;

 65 begin

 66     vis[x]:=time;

 67     if flag[x]=false then inc(a[x],1<<step);

 68     for i:=1 to ti do

 69       if vis[i]<>time then

 70       if tu[x,i] then

 71       if map[x,i]>0 then dfs(i);

 72 end;

 73 

 74 procedure main;

 75 var

 76     j,k,m,x,y:longint;

 77 begin

 78     fillchar(flag,sizeof(flag),false);

 79     fillchar(tu,sizeof(tu),false);

 80     fillchar(a,sizeof(a),0);

 81     read(n,m);

 82     si:=0;

 83     ti:=n+1;

 84     for j:=1 to m do

 85       begin

 86         read(x,y);

 87         tu[y,x]:=true;

 88         tu[x,y]:=true;

 89       end;

 90     for j:=1 to n do

 91       begin

 92         tu[si,j]:=true;

 93         tu[j,ti]:=true;

 94       end;

 95     read(m);

 96     for j:=1 to m do

 97       begin

 98         read(x,y);

 99         flag[x]:=true;

100         a[x]:=y;

101       end;

102     for step:=0 to 30 do

103       begin

104         fillchar(map,sizeof(map),0);

105         for j:=1 to n do

106           if flag[j] then

107             if a[j] and (1<<step)=0 then

108               begin

109                 map[j,ti]:=inf;

110                 for k:=1 to n do

111                   if flag[k]=false then map[k,j]:=1;

112               end

113             else

114               begin

115                 map[si,j]:=inf;

116                 for k:=1 to n do

117                   if flag[k]=false then map[j,k]:=1;

118               end

119           else

120             for k:=j+1 to n do

121               if flag[k]=false then

122               begin

123                 map[j,k]:=1;

124                 map[k,j]:=1;

125               end;

126         sap;

127         inc(time);

128         dfs(0);

129       end;

130     for j:=1 to n do

131       writeln(a[j]);

132 end;

133 

134 begin

135     read(t);

136     while t>0 do

137       begin

138         main;

139         dec(t);

140       end;

141 end.
View Code

 

你可能感兴趣的:(mark)