python scipy拟合曲线optimize.curve_fit 50例

Python scipy.optimize 模块,curve_fit() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用scipy.optimize.curve_fit()

项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码

def fit_rabi(xdata, ydata):
    """Analyze Rabi amplitude data to find pi-pulse amplitude and phase offset.
        Arguments:
            xdata: ndarray of calibration amplitudes. length should be even.
            ydata: measurement amplitudes
        Returns:
            pi_amp: Fitted amplitude of pi pulsed
            offset: Fitted mixer offset
            fit_pts: Fitted points."""

    #seed Rabi frequency from largest FFT component
    N = len(ydata)
    yfft = fft(ydata)
    f_max_ind = np.argmax(np.abs(yfft[1:N//2]))
    f_0 = 0.5 * max([1, f_max_ind]) / xdata[-1]
    amp_0 = 0.5*(ydata.max() - ydata.min())
    offset_0 = np.mean(ydata)
    phase_0 = 0
    if ydata[N//2 - 1] > offset_0:
        amp_0 = -amp_0
    popt, _ = curve_fit(rabi_model, xdata, ydata, [offset_0, amp_0, f_0, phase_0])
    f_rabi = np.abs(popt[2])
    pi_amp = 0.5/f_rabi
    offset = popt[3]
    return pi_amp, offset, popt

 

 

项目:pyqha    作者:mauropalumbo75    | 项目源码 | 文件源码

def fit_Murn(V,E,guess=[0.0,0.0,900/RY_KBAR,1.15],lm_pars={}):
    """
    This is the function for fitting with the Murnaghan EOS as a function of volume only.

    The input variable *V* is an 1D array of volumes, *E* are the corresponding 
    energies (or other analogous quantity to be fitted with the Murnaghan EOS.
    *a*

    Note: volumes must be in a.u.^3 and energies in Rydberg.

    """
    # reasonable initial guesses for EOS parameters
    if guess[0]==0.0:
        guess[0] = E[len(E) / 2]
    if guess[1]==0.0:
        guess[1] = V[len(V) / 2]

    a, pcov = curve_fit(E_MurnV, V, E, p0=guess, **lm_pars)

    chi = 0
    for i in range(0,len(V)):
        chi += (E[i]-E_Murn(V[i],a))**2

    return a, pcov, chi

 

 

项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码

def fit_photon_number(xdata, ydata, params):
    ''' Fit number of measurement photons before a Ramsey. See McClure et al., Phys. Rev. App. 2016
    input params:
    1 - cavity decay rate kappa (MHz)
    2 - detuning Delta (MHz)
    3 - dispersive shift 2Chi (MHz)
    4 - Ramsey decay time T2* (us)
    5 - exp(-t_meas/T1) (us), only if starting from |1> (to include relaxation during the 1st msm't)
    6 - initial qubit state (0/1)
    '''
    params = [2*np.pi*p for p in params[:3]] + params[3:] # convert to angular frequencies
    def model_0(t, pa, pb):
        return (-np.imag(np.exp(-(1/params[3]+params[1]*1j)*t + (pa-pb*params[2]*(1-np.exp(-((params[0] + params[2]*1j)*t)))/(params[0]+params[2]*1j))*1j)))
    def model(t, pa, pb):
        return  params[4]*model_0(t, pa, pb) + (1-params[4])*model_0(t, pa+np.pi, pb) if params[5] == 1  else model_0(t, pa, pb)
    popt, pcov = curve_fit(model, xdata, ydata, p0 = [0, 1])
    perr = np.sqrt(np.diag(pcov))
    finer_delays = np.linspace(np.min(xdata), np.max(xdata), 4*len(xdata))
    fit_curve = model(finer_delays, *popt)
    return popt[1], perr[1], (finer_delays, fit_curve)

 

 

项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码

def find_null_offset(xpts, powers, default=0.0):
    """Finds the offset corresponding to the minimum power using a fit to the measured data"""
    def model(x, a, b, c):
        return a*(x - b)**2 + c
    powers = np.power(10, powers/10.)
    min_idx = np.argmin(powers)
    try:
        fit = curve_fit(model, xpts, powers, p0=[1, xpts[min_idx], powers[min_idx]])
    except RuntimeError:
        logger.warning("Mixer null offset fit failed.")
        return default, np.zeros(len(powers))
    best_offset = np.real(fit[0][1])
    best_offset = np.minimum(best_offset, xpts[-1])
    best_offset = np.maximum(best_offset, xpts[0])
    xpts_fine = np.linspace(xpts[0],xpts[-1],101)
    fit_pts = np.array([np.real(model(x, *fit[0])) for x in xpts_fine])
    if min(fit_pts)<0: fit_pts-=min(fit_pts)-1e-10 #prevent log of a negative number
    return best_offset, xpts_fine, 10*np.log10(fit_pts)

 

 

项目:dataArtist    作者:radjkarl    | 项目源码 | 文件源码

def activate(self):
        if self.pMethod.value() == 'Poisson':
            v = self.pPlot.value()
            index = None
            if v != 'All':
                # index here if specific plot chosen
                index = self.pPlot.opts['limits'].index(v) - 1
            plots = self.display.widget.getData(index)

            for plot in plots:
                # fit with curve_fit
                x, y = plot.x, plot.y
                if not self.guess:
                    self.guess = _Poisson.initGuess(x, y)
                parameters, cov_matrix = curve_fit(
                    _Poisson.function, x, y, self.guess)
                # plot poisson-deviation with fitted parameter
                x_vals = self._getXVals()
                y_vals = _Poisson.function(x_vals, *parameters)
                self.display.addLayer(data=(x_vals, y_vals),
                                      filename='X - Poission fitted')

 

 

项目:Thrifty    作者:swkrueger    | 项目源码 | 文件源码

def make_dirichlet(block_len, carrier_len, width=6):
    def _fit_model(xdata, amplitude, time_offset):
        xdata = np.array(xdata, dtype=np.float64)
        dirichlet = _dirichlet_kernel(xdata-time_offset,
                                      block_len,
                                      carrier_len)
        return amplitude * np.abs(dirichlet)

    def _interpolator(fft_mag, peak):
        xdata = np.array(np.arange(-(width//2), width//2+1))
        ydata = fft_mag[peak + xdata]
        initial_guess = (fft_mag[peak], 0)
        popt, _ = curve_fit(_fit_model, xdata, ydata, p0=initial_guess)
        _, fit_offset = popt
        return fit_offset

    return _interpolator

 

 

项目:GPfates    作者:Teichlab    | 项目源码 | 文件源码

def identify_bifurcation_point(omgp, n_splits=30):
    ''' Linear breakpoint model to infer drastic likelihood decrease
    '''
    mix_m = OMGP(omgp.X, omgp.Y, K=omgp.K, kernels=omgp.kern)
    mix_m.variance = omgp.variance

    phi = omgp.phi

    log_liks = []

    t_splits = np.linspace(mix_m.X.min(), mix_m.X.max(), n_splits)
    for t_s in tqdm(t_splits):
        mask = mix_m.X > t_s
        phi_mix = np.ones_like(phi) * 0.5
        phi_mix[mask[:, 0]] = phi[mask[:, 0]]

        mix_m.phi = phi_mix
        log_liks.append(mix_m.log_likelihood())

    x = t_splits
    y = np.array(log_liks)
    p, e = optimize.curve_fit(breakpoint_linear, x, y)

    return p[0]

 

 

项目:social-media-pulse    作者:jrmontag    | 项目源码 | 文件源码

def optimize(self):
        """
        Applies the chosen optimization technique to the model's evaluate method and 
        the appropriate data structures.  
        """ 
        # use helper method to possibly narrow data by user-entered window 
        x, y = self.data.get_data_to_fit()
        # optimize based on model-specific evaluate() 
        optimal_params, covar = sp_optimize.curve_fit( 
                                                    self.model.evaluate,
                                                    x, 
                                                    y, 
                                                    self.model.parameters 
                                                    )

        # store the final fit parameters and covariance in the model object for JIT calculations
        self.model.parameters = optimal_params
        self.model.covariance = covar

        return optimal_params, covar

 

 

项目:pynephoscope    作者:neXyon    | 项目源码 | 文件源码

def findStar(self, x, y):
        x = int(x)
        y = int(y)

        roi_size = Configuration.gaussian_roi_size

        roi = self.image[y - roi_size:y + roi_size + 1, x - roi_size:x + roi_size + 1]

        X, Y = np.meshgrid(range(x - roi_size, x + roi_size + 1), range(y - roi_size, y + roi_size + 1))

        p0 = (1, x, y, 1, 0, 1)

        try:
            popt, _ = optimize.curve_fit(self.gaussBivarFit, (X, Y), roi.ravel(), p0=p0, maxfev=10000)
        except Exception as e:
            return 0, (0, 0), np.matrix([[0, 0], [0, 0]]), roi

        A, x0, y0, v1, v2, v3 = popt

        cov = np.matrix([[v1, v2 / 2], [v2 / 2, v3]]).I
        mu = (x0, y0)

        return A, mu, cov, roi

 

 

项目:qmflows-namd    作者:SCM-NV    | 项目源码 | 文件源码

def dephasing(f):
    """
    Computes the dephasing time of a given function using optical response
    formalisms:
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 1995
    About the implementation we use the 2nd order cumulant expansion.
    See also eq. (2) in : Kilina et al. Phys. Rev. Lett., 110, 180404, (2013)
    To calculate the dephasing time tau we fit the dephasing function to a
    gaussian of the type : exp(-0.5 * (-x / tau) ** 2)
    """
    ts = np.arange(f.shape[0])
    cumu_ii = np.stack(np.sum(f[0:i]) for i in range(ts.size)) / hbar
    cumu_i = np.stack(np.sum(cumu_ii[0:i]) for i in range(ts.size)) / hbar
    deph = np.exp(-cumu_i)
    np.seterr(over='ignore')
    popt = curve_fit(gauss_function, ts, deph)[0]
    xs = np.exp(-0.5 * (-ts / popt[0]) ** 2)
    deph = np.column_stack((deph, xs))
    rate = popt[0]
    return deph, rate

 

 

项目:WXMLTilingsHOWTO    作者:maxieds    | 项目源码 | 文件源码

def fit_SaddleConnGoldenL_pdf(hist_data, xdata, ydata, hrange): 

     [sl, su] = hrange
     [fl, fu] = [2.3528, 8.1976]
     b = (fu - fl) / (su - sl)
     c = fu - b * su
     #if len(xdata) > 2 * MAX_FIT_POINTS: # trim to the middle 9000 x values
     #     idxl, idxu = len(xdata) / 2 - MAX_FIT_POINTS/4, len(xdata) / 2 + MAX_FIT_POINTS/4
     #     endu = len(xdata) - MAX_FIT_POINTS / 4 - 1
     #     xdata = list(xdata)[idxl:idxu+1] + list(xdata)[0:MAX_FIT_POINTS/4+1] + list(xdata)[endu:]
     #     ydata = list(ydata)[idxl:idxu+1] + list(ydata)[0:MAX_FIT_POINTS/4+1] + list(ydata)[endu:]
     ##
     # it appears that scipy has a bug, let's do an adjustment to make it go away:
     if len(ydata) - len(xdata) == 1:
          ydata = ydata[:-1]
     ##

     fit_func_v1 = lambda x, a, b, c, d: a * sc_fitfunc(b*x+c) + d
     fit_func = lambda x, a, d: fit_func_v1(x, a, b, c, d)
     p, pcov = curve_fit(fit_func, xdata, ydata)#, bounds = ([0,0], [10,10]))
     print p, pcov
     return lambda x: fit_func(x, p[0], p[1]), (1 - c) / b, [p[0], b, c, p[1]]

##

 

 

项目:BigDataML    作者:azheng333    | 项目源码 | 文件源码

def fun():
    T = [1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968]
    S = [29.72, 30.61, 31.51, 32.13, 32.34, 32.85, 33.56, 34.20, 34.83]

    xdata = np.array(T)
    ydata = np.log(np.array(S))

    def func(x, a, b):
        return a + b * x

    # ??????????????
    popt, pcov = curve_fit(func, xdata, ydata)

    plt.figure()
    plt.plot(xdata, ydata, 'ko', label="Original Noised Data")
    plt.plot(xdata, func(xdata, *popt), 'r', label="Fitted Curve")
    plt.show()
    plt.savefig('test.png')

 

 

项目:Optics    作者:danustc    | 项目源码 | 文件源码

def psf_zplane(stack, dz, w0, de = 1):
    '''
    determine the position of the real focal plane.
    Don't mistake with psf_slice!
    '''
    nz, ny, nx = stack.shape
    cy, cx = np.unravel_index(np.argmax(gf(stack,2)), (nz,ny,nx))[1:]

    zrange = (nz-1)*dz*0.5
    zz = np.linspace(-zrange, zrange, nz)
    center_z = stack[:,cy-de:cy+de+1,cx-de:cx+de+1]
    im_z = center_z.mean(axis=2).mean(axis=1)

    b = np.mean((im_z[0],im_z[-1]))
    a = im_z.max() - b

    p0 = (a,0,w0,b)
    popt = optimize.curve_fit(gaussian, zz, im_z, p0)[0]
    z_offset = popt[1] # The original version is wrong
    return z_offset, zz

 

 

项目:Optics    作者:danustc    | 项目源码 | 文件源码

def psf_zplane(stack, dz, w0, de = 1):
    '''
    determine the position of the real focal plane.
    Don't mistake with psf_slice!
    '''
    nz, ny, nx = stack.shape
    cy, cx = np.unravel_index(np.argmax(gf(stack,2)), (nz,ny,nx))[1:]

    zrange = (nz-1)*dz*0.5
    zz = np.linspace(-zrange, zrange, nz)
    center_z = stack[:,cy-de:cy+de+1,cx-de:cx+de+1]
    im_z = center_z.mean(axis=2).mean(axis=1)

    b = np.mean((im_z[0],im_z[-1]))
    a = im_z.max() - b

    p0 = (a,0,w0,b)
    popt = optimize.curve_fit(gaussian, zz, im_z, p0)[0]
    z_offset = popt[1] # The original version is wrong
    return z_offset, zz

 

 

项目:Ship    作者:jarlekramer    | 项目源码 | 文件源码

def __init__(self, A, h, alpha, CL, CD, x0=0.95):
        rho = 1025

        super().__init__(A, h, alpha, CL, CD, rho)

        self.x0 = x0

        # Create force functions based on input data
        fitParams, fitCovariances = curve_fit(liftFunc, self.alpha, self.CL)

        self.CL_a1 = fitParams[0]

        fitParams, fitCovariances = curve_fit(dragFunc, self.alpha, self.CD)

        self.CD_a0 = fitParams[0]
        self.CD_a2 = fitParams[1]

        # Max and min alpha
        self.alpha_min = 0
        self.alpha_max = 30*np.pi/180

 

 

项目:Ship    作者:jarlekramer    | 项目源码 | 文件源码

def __init__(self, A, h, alpha, CL, CD, x0=0.95):
        rho = 1025

        self.removeBaseDrag = True

        super().__init__(A, h, alpha, CL, CD, rho)

        self.x0 = x0

        # Create force functions based on input data
        fitParams, fitCovariances = curve_fit(liftFunc, self.alpha, self.CL)

        self.CL_a1 = fitParams[0]

        fitParams, fitCovariances = curve_fit(dragFunc, self.alpha, self.CD)

        self.CD_a0 = fitParams[0]
        self.CD_a2 = fitParams[1]

        # Max and min alpha
        self.alpha_min = 0
        self.alpha_max = 40*np.pi/180

        self.alpha_max = 30*np.pi/180

 

 

项目:Ship    作者:jarlekramer    | 项目源码 | 文件源码

def setDriftData(self, alpha, CL, CDi, CM):
        self.alpha = alpha
        self.CL    = CL
        self.CDi   = CDi
        self.CM    = CM

        # Calculate coefficients for lift
        fitParams, fitCovariances = curve_fit(liftFunc, self.alpha, self.CL)

        self.CL_a1 = fitParams[0]
        self.CL_a2 = fitParams[1]

        # Calculate coefficients for induced drag
        fitParams, fitCovariances = curve_fit(inducedDragFunc, self.alpha, self.CDi)

        self.CDi_a2 = fitParams[0]

        # Spline interpolation for moment
        self.CMspl = interpolate.splrep(self.alpha, self.CM, s=1e-9)

 

 

项目:WellApplication    作者:inkenbrandt    | 项目源码 | 文件源码

def ratingCurve(discharge, stage):
    """Computes rating curve based on discharge measurements coupled with stage
    readings.
    discharge = array of measured discharges;
    stage = array of corresponding stage readings;
    Returns coefficients a, b for the rating curve in the form y = a * x**b
    https://github.com/hydrogeog/hydro/blob/master/hydro/core.py
    """
    from scipy.optimize import curve_fit

    exp_curve = lambda x, a, b: (a * x ** b)
    popt, pcov = curve_fit(exp_curve, stage, discharge)


    a = 0.0
    b = 0.0

    for i, j in zip(discharge, stage):
        a += (i - exp_curve(j, popt[0], popt[1]))**2
        b += (i - np.mean(discharge))**2
    r_squ = 1 - a / b


    return popt, r_squ

 

 

项目:WellApplication    作者:inkenbrandt    | 项目源码 | 文件源码

def ratingCurve(discharge, stage):
    """Computes rating curve based on discharge measurements coupled with stage
    readings.
    discharge = array of measured discharges;
    stage = array of corresponding stage readings;
    Returns coefficients a, b for the rating curve in the form y = a * x**b
    """
    from scipy.optimize import curve_fit
    popt, pcov = curve_fit(exp_curve, stage, discharge)

    def r_squ():
        a = 0.0
        b = 0.0
        for i, j in zip(discharge, stage):
            a += (i - exp_curve(j, popt[0], popt[1]))**2
            b += (i - np.mean(discharge))**2
        return 1 - a / b

    return popt, r_squ()

 

 

项目:dragonboard_testbench    作者:cta-observatory    | 项目源码 | 文件源码

def fit(df, cell, plot=False):
    big_time = df.delta_t.quantile(0.75)
    p0 = [
        1.3,
        -0.38,
        df.adc_counts[df.delta_t >= big_time].mean(),
    ]
    try:
        (a, b, c), cov = curve_fit(
            f,
            df['delta_t'],
            df['adc_counts'],
            p0=p0,
        )
    except RuntimeError:
        logging.error('Could not fit cell {}'.format(cell))
        return np.full(4, np.nan)

    ndf = len(df.index) - 3
    residuals = df['adc_counts'] - f(df['delta_t'], a, b, c)
    chisquare = np.sum(residuals**2) / ndf

    return a, b, c, chisquare

 

 

项目:ProtScan    作者:gianlucacorrado    | 项目源码 | 文件源码

def fit_optimal(blocks, keys):
    """Fit the cumulative distribution, by optimization."""
    values = list()
    for k in keys:
        values.extend([max_val for (_, _, max_val) in blocks[k]])
    hist, bin_edges = np.histogram(values, bins=100, normed=True)
    bin_centers = np.array(
        [(bin_edges[i - 1] + bin_edges[i]) / 2
         for i in range(1, len(bin_edges))])
    cumulative = np.cumsum(hist) / np.sum(hist)
    popt, _ = optimize.curve_fit(func, bin_centers, cumulative)
    return popt

 

 

项目:atoolbox    作者:liweitianux    | 项目源码 | 文件源码

def fit_model(func, xdata, ydata, yerrdata, p0):
    """
    Fit the provided data with the beta model.

    Arguments:
        p0: initial values for the parameters of beta model

    Return:
        (popt, infodict)
        popt: optimal values for the parameters
        infodict:
            * fvec: the function evaluated at the output parameters
            * dof: degree of freedom
            * chisq: chi-squared
            * perr: one standard deviation errors on the parameters
    """
    popt, pcov = curve_fit(func, xdata, ydata, p0=p0, sigma=yerrdata)
    # the function evaluated at the output parameters
    fvec = lambda x: func(x, *popt)
    # degree of freedom
    dof = len(xdata) - len(popt) - 1
    # chi squared
    chisq = np.sum(((ydata - fvec(xdata)) / yerrdata) ** 2)
    # one standard deviation errors on the parameters
    perr = np.sqrt(np.diag(pcov))
    infodict = {
            'fvec': fvec,
            'dof': dof,
            'chisq': chisq,
            'perr': perr
    }
    return (popt, infodict)

 

 

项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码

def fit_drag(data, DRAG_vec, pulse_vec):
    """Fit calibration curves vs DRAG parameter, for variable number of pulses"""
    num_DRAG = len(DRAG_vec)
    num_seqs = len(pulse_vec)
    xopt_vec = np.zeros(num_seqs)
    perr_vec = np.zeros(num_seqs)
    popt_mat = np.zeros((4, num_seqs))
    data = data.reshape(len(data)//num_DRAG, num_DRAG)
    #first fit sine to lowest n, for the full range
    data_n = data[1, :]
    T0 = 2*(DRAG_vec[np.argmax(data_n)] - DRAG_vec[np.argmin(data_n)]) #rough estimate of period

    p0 = [0, 1, T0, 0]
    popt, pcov = curve_fit(sinf, DRAG_vec, data_n, p0 = p0)
    perr_vec[0] = np.sqrt(np.diag(pcov))[0]
    x_fine = np.linspace(min(DRAG_vec), max(DRAG_vec), 1001)
    xopt_vec[0] = x_fine[np.argmin(sinf(x_fine, *popt))]
    popt_mat[:,0] = popt
    for ct in range(1, len(pulse_vec)):
        #quadratic fit for subsequent steps, narrower range
        data_n = data[ct, :]
        p0 = [1, xopt_vec[ct-1], 0]
        #recenter for next fit
        closest_ind =np.argmin(abs(DRAG_vec - xopt_vec[ct-1]))
        fit_range = int(np.round(0.5*num_DRAG*pulse_vec[0]/pulse_vec[ct]))
        curr_DRAG_vec = DRAG_vec[max(0, closest_ind - fit_range) : min(num_DRAG-1, closest_ind + fit_range)]
        reduced_data_n = data_n[max(0, closest_ind - fit_range) : min(num_DRAG-1, closest_ind + fit_range)]
        #quadratic fit
        popt, pcov = curve_fit(quadf, curr_DRAG_vec, reduced_data_n, p0 = p0)
        perr_vec[ct] = np.sqrt(np.diag(pcov))[0]
        x_fine = np.linspace(min(curr_DRAG_vec), max(curr_DRAG_vec), 1001)
        xopt_vec[ct] = x_fine[np.argmin(quadf(x_fine, *popt))] #why not x0?
        popt_mat[:3,ct] = popt
    return xopt_vec, perr_vec, popt_mat

 

 

项目:Auspex    作者:BBN-Q    | 项目源码 | 文件源码

def fit_quad(xdata, ydata):
    popt, pcov = curve_fit(quadf, xdata, ydata, p0 = [1, min(ydata), 0])
    perr = np.sqrt(np.diag(pcov))
    return popt, perr

 

 

项目:modesolverpy    作者:jtambasco    | 项目源码 | 文件源码

def fit_gaussian(x, y, z_2d, save_fits=False):
    z = z_2d

    max_idx = np.unravel_index(z.argmax(), z.shape)
    max_row = max_idx[0] - 1
    max_col = max_idx[1] - 1

    z_max_row = z[max_row, :]
    z_max_col = z[:, max_col]
    A = z[max_row, max_col]

    p_guess_x = (A, x[max_col], 0.1*(x[-1] - x[0]))
    p_guess_y = (A, y[max_row], 0.1*(y[-1] - y[0]))

    coeffs_x, var_matrix_x = sciopt.curve_fit(gaussian, x, z_max_row, p_guess_x)
    coeffs_y, var_matrix_y = sciopt.curve_fit(gaussian, y, z_max_col, p_guess_y)

    c_x = (x[-1]-x[0])*(max_col+1)/x.size + x[0]
    c_y = (y[-1]-y[0])*(y.size-(max_row+1))/y.size + y[0]
    centre = (c_x, c_y)

    sigma = np.array([coeffs_x[2], coeffs_y[2]])
    fwhm = 2.355 * sigma
    sigma_2 = 1.699 * fwhm

    if save_fits:
        with open('x_fit.dat', 'w') as fs:
            for c in np.c_[x, z_max_row, gaussian(x, *coeffs_x)]:
                s = ','.join([str(v) for v in c])
                fs.write(s+'\n')
        with open('y_fit.dat', 'w') as fs:
            for c in np.c_[y, z_max_col, gaussian(y, *coeffs_y)]:
                s = ','.join([str(v) for v in c])
                fs.write(s+'\n')

    return A, centre, sigma_2

 

 

项目:pystudio    作者:satorchi    | 项目源码 | 文件源码

def fit_Pbath(T_pts, P_pts):
    '''
    find best fit to the P_bath function
    '''

    # make sure T_pts and P_pts are 1d arrays
    npts=len(T_pts)
    T=np.array(T_pts).reshape(npts)
    P=np.array(P_pts).reshape(npts)
    try:
        ret=curve_fit(P_bath_function,T,P)
    except:
        print('insufficient data for TES %i' % TES)
        ret=None
    return ret

 

 

项目:accpy    作者:kramerfelix    | 项目源码 | 文件源码

def myfit(x, y, betagamma, qL, orientation, T, yerr=None, krange=[]):
    if len(krange) != 0:
        # trim to given range
        booleanrange = [(x >= krange[0]) & (x <= krange[1])]
        x = x[booleanrange]
        y = y[booleanrange]
    if yerr is None:
        popt, pcov = curve_fit(fun, x, y, sigma=None)
    else:
        if len(krange) != 0:
            yerr = yerr[booleanrange]
        popt, pcov = curve_fit(fun, x, y, sigma=yerr, absolute_sigma=True)
    x = linspace(x[0], x[-1], 1e3)
    fit = fun(x, *popt)
    perr = sqrt(diag(pcov))
    A = array([popt[0], perr[0]])/qL**2
    B = array([popt[1], perr[1]])/qL*orientation
    C = array([popt[2], perr[2]])
    eps, bet, alp, gam = twissfromparabola(A, B, C, T)
    epsn = betagamma*eps*1e6
    eps *= 1e9
    string = (r'$\beta=%.2f \pm %.2f$''\n'
              r'$\alpha=%.2f \pm %.2f$''\n'
              r'$\gamma=%.2f \pm %.2f$''\n'
              r'$\epsilon=(%.2f \pm %.2f)\pi\, nm\, rad$''\n'
              r'$\epsilon^*=(%.2f \pm %.2f)\pi\, \mu m\, rad$'
              % (bet[0], bet[1], alp[0], alp[1], gam[0], gam[1],
                 eps[0], eps[1], epsn[0], epsn[1]))
    return x, fit, string

 

 

项目:accpy    作者:kramerfelix    | 项目源码 | 文件源码

def dofit(xdata, ydata, betagamma, T, dE, D, QL, orientation, yerr=None,
          krange=[]):
    # make sure that k is positive k = abs(g)/Brho_0
    xdata = abs(xdata)
    if len(krange) != 0:
        # trim to given range
        xdata = xdata[krange]
        ydata = ydata[krange]
        yerr = yerr[krange]
    if yerr is None:
        popt, pcov = curve_fit(fun, xdata, ydata, sigma=None)
    else:
        popt, pcov = curve_fit(fun, xdata, ydata, sigma=yerr, absolute_sigma=True)
    fit = fun(xdata, *popt)
    perr = np.sqrt(np.diag(pcov))
    A = np.array([popt[0], perr[0]])
    B = np.array([popt[1], perr[1]])
    C = np.array([popt[2], perr[2]])
    eps, bet, alp, gam = twissfromparabola(A, B, C, T, dE, D, QL, orientation)
    epsn = betagamma*eps*1e6
    eps *= 1e9
    A *= 1e9
    B *= 1e9
    C *= 1e9
    string = (r'$function:\;y=ax^2+bx+c$''\n'
              r'$a=(%.2f \pm %.2f)\cdot10^{-9}$''\n'
              r'$b=(%.2f \pm %.2f)\cdot10^{-9}$''\n'
              r'$c=(%.2f \pm %.2f)\cdot10^{-9}$''\n'
              r'$\beta=%.2f \pm %.2f$''\n'
              r'$\alpha=%.2f \pm %.2f$''\n'
              r'$\gamma=%.2f \pm %.2f$''\n'
              r'$\epsilon=(%.2f \pm %.2f)\pi\, nm\, rad$''\n'
              r'$\epsilon^*=(%.2f \pm %.2f)\pi\, \mu m\, rad$'
              % (A[0], A[1], B[0], B[1], C[0], C[1],
                 bet[0], bet[1], alp[0], alp[1], gam[0], gam[1],
                 eps[0], eps[1], epsn[0], epsn[1]))
    return string, fit, xdata

 

 

项目:accpy    作者:kramerfelix    | 项目源码 | 文件源码

def parabolafit(xdata, ydata, init, sigma):
    popt, pcov = curve_fit(fun, xdata, ydata, p0=init, sigma=sigma)
    perr = np.sqrt(np.diag(pcov))
    x = np.linspace(min(xdata), max(xdata), 1e3)
    fit = fun(x, *popt)
    A = np.array([popt[0], perr[0]])
    B = np.array([popt[1], perr[1]])
    C = np.array([popt[2], perr[2]])
    return x, fit, A, B, C

 

 

项目:georges    作者:chernals    | 项目源码 | 文件源码

def bpm_fit(a, p):
    if a is None:
        return None
    x = a['channel']['data'][p][:, 1]
    y = a['channel']['data'][p][:, 2]
    ar = np.trapz(y / np.sum(y) * len(y), x)
    mean = np.mean(x * y / np.sum(y) * len(y))
    rms = np.std(x * y / np.sum(y) * len(y))

    popt, pcov = curve_fit(gaussian, x, y, p0=[ar, mean, rms])

    return [popt, np.sqrt(pcov.diagonal())]

 

 

项目:georges    作者:chernals    | 项目源码 | 文件源码

def variquad_fit(x, y):
    popt, pcov = curve_fit(quadratic, x, y, p0=[0, 0, 1])

    return [popt, np.sqrt(pcov.diagonal())]

 

 

项目:nmmn    作者:rsnemmen    | 项目源码 | 文件源码

def _peakdetect_parabole_fitter(raw_peaks, x_axis, y_axis, points):
    """
    Performs the actual parabole fitting for the peakdetect_parabole function.

    keyword arguments:
    raw_peaks -- A list of either the maximium or the minimum peaks, as given
        by the peakdetect_zero_crossing function, with index used as x-axis
    x_axis -- A numpy list of all the x values
    y_axis -- A numpy list of all the y values
    points -- How many points around the peak should be used during curve
        fitting, must be odd.

    return -- A list giving all the peaks and the fitted waveform, format:
        [[x, y, [fitted_x, fitted_y]]]

    """
    func = lambda x, k, tau, m: k * ((x - tau) ** 2) + m
    fitted_peaks = []
    for peak in raw_peaks:
        index = peak[0]
        x_data = x_axis[index - points // 2: index + points // 2 + 1]
        y_data = y_axis[index - points // 2: index + points // 2 + 1]
        # get a first approximation of tau (peak position in time)
        tau = x_axis[index]
        # get a first approximation of peak amplitude
        m = peak[1]

        # build list of approximations
        # k = -m as first approximation?
        p0 = (-m, tau, m)
        popt, pcov = curve_fit(func, x_data, y_data, p0)
        # retrieve tau and m i.e x and y value of peak
        x, y = popt[1:3]

        # create a high resolution data set for the fitted waveform
        x2 = np.linspace(x_data[0], x_data[-1], points * 10)
        y2 = func(x2, *popt)

        fitted_peaks.append([x, y, [x2, y2]])

    return fitted_peaks

 

 

项目:frc_rekt    作者:jaustinpage    | 项目源码 | 文件源码

def _fit_func_factory(a=None, b=None, c=None, d=None, e=None):
        # Specific with correction
        if a and b and c and d and e:

            def func(x):
                """Specific Function."""
                return a * ((b * (x + c))**d) + e

        # Specific without correction
        elif a and b and c and d:

            def func(x):
                """Specific Function."""
                return a * ((b * (x + c))**d)

        # Generic, which we have scipy.optimize.curve_fit run on
        # scipy.optimize.curve_fit will then give us a, b, c, d,
        # however, scipy.optimize has touble with e. We correct e "by hand"
        # at the end.
        else:

            def func(x, a, b, c, d):
                """Unparameterized Function."""
                return a * ((b * (x + c))**d)

        return func

 

 

项目:frc_rekt    作者:jaustinpage    | 项目源码 | 文件源码

def _generate_func_fit(func_factory, x, y):
        popt, pcov = optimize.curve_fit(func_factory(), x, y)
        logging.debug(popt)
        logging.debug(pcov)
        # Static shift to have the end condition be nice
        unshifted_func = func_factory(*popt)
        end_diff = y.iloc[-1] - unshifted_func(x.iloc[-1])
        logging.debug("end diff: %s", end_diff)
        popt_shifted = np.append(popt, end_diff)
        return func_factory(*popt_shifted)

 

 

项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码

def fit(self, lambdav, fluxv, sigmav):
        if np.all(np.asarray(fluxv)>0):
            popt, pcov = curve_fit(self._bound_greybody, lambdav, fluxv, p0=(17,1e7), sigma=sigmav,
                                    absolute_sigma=False, maxfev=5000)
            return popt
        else:
            return (0,0)

# ----------------------------------------------------------------------

 

 

项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码

def fit(self, lambdav, fluxv, sigmav):
        if np.all(np.asarray(fluxv)>0):
            popt, pcov = curve_fit(self._bound_greybody, lambdav, fluxv, p0=(17,1e7), sigma=sigmav,
                                    absolute_sigma=False, maxfev=5000)
            return popt
        else:
            return (0,0)

# ----------------------------------------------------------------------

 

 

项目:Orbit-Fitting    作者:jacob-i-skinner    | 项目源码 | 文件源码

def initialGuessNoE(lower, upper, JDp, RVp):
    '''
    Make a guess of the values of the elements, assuming it is circular.

    Parameters
    ----------
    lower : list(ndim)
        Lower bounds of the orbital elements.

    upper : list(ndim)
        Upper bounds of the orbital elements.

    JDp : list
        Times of observation of the primary component.

    RVp : list
        Radial velocities of the primary component.

    Returns
    -------
    (K, T, P, y) : list
        Output from curve_fit.

    '''
    from scipy.optimize import curve_fit

    # This is a simple harmonic function.
    def alteredNoERV(x, K, T, P, y):
        return K*cos((2*pi/P)*(x-T))+y

    return curve_fit(alteredNoERV, JDp, np.asarray(RVp), bounds=(lower, upper))[0]

 

 

项目:imgProcessor    作者:radjkarl    | 项目源码 | 文件源码

def scaleSignal(img, fitParams=None,
                backgroundToZero=False, reference=None):
    '''
    scale the image between...

    backgroundToZero=True -> 0 (average background) and 1 (maximum signal)
    backgroundToZero=False -> signal+-3std

    reference -> reference image -- scale image to fit this one

    returns:
    scaled image
    '''
    img = imread(img)
    if reference is not None:
        #         def fn(ii, m,n):
        #             return ii*m+n
        #         curve_fit(fn, img[::10,::10], ref[::10,::10])

        low, high = signalRange(img, fitParams)
        low2, high2 = signalRange(reference)
        img = np.asfarray(img)
        ampl = (high2 - low2) / (high - low)
        img -= low
        img *= ampl
        img += low2
        return img
    else:
        offs, div = scaleParams(img, fitParams, backgroundToZero)
        img = np.asfarray(img) - offs
        img /= div
        print('offset: %s, divident: %s' % (offs, div))
        return img

 

 

项目:imgProcessor    作者:radjkarl    | 项目源码 | 文件源码

def scaleParamsFromReference(img, reference):
    # saving startup time:
    from scipy.optimize import curve_fit

    def ff(arr):
        arr = imread(arr, 'gray')
        if arr.size > 300000:
            arr = arr[::10, ::10]
        m = np.nanmean(arr)
        s = np.nanstd(arr)
        r = m - 3 * s, m + 3 * s
        b = (r[1] - r[0]) / 5
        return arr, r, b

    img, imgr, imgb = ff(img)
    reference, refr, refb = ff(reference)

    nbins = np.clip(15, max(imgb, refb), 50)

    refh = np.histogram(reference, bins=nbins, range=refr)[
        0].astype(np.float32)
    imgh = np.histogram(img, bins=nbins, range=imgr)[0].astype(np.float32)

    import pylab as plt
    plt.figure(1)
    plt.plot(refh)

    plt.figure(2)
    plt.plot(imgh)
    plt.show()

    def fn(x, offs, div):
        return (x - offs) / div

    params, fitCovariances = curve_fit(fn, refh, imgh, p0=(0, 1))
    perr = np.sqrt(np.diag(fitCovariances))
    print('error scaling to reference image: %s' % perr[0])
    # if perr[0] < 0.1:
    return params[0], params[1]

 

 

项目:imgProcessor    作者:radjkarl    | 项目源码 | 文件源码

def _fit(x, y):
    popt, _ = curve_fit(function, x, y, check_finite=False)
    return popt

 

 

项目:CElegansBehaviour    作者:ChristophKirst    | 项目源码 | 文件源码

def g(x,a,b):
  return a * np.exp(b * ()


popt, pcov = opt.curve_fit(f, xdata, w, p0 = (0.1, 10));

plt.figure(1); plt.clf();
plt.plot(xdata, w)
plt.plot(xdata, f(xdata, *popt), 'r')
plt.title(str(popt))

 

 

项目:Wind-Turbine-Design    作者:doublerob7    | 项目源码 | 文件源码

def sigmoid(x, x0, k):
    import numpy as np
    import pylab
    from scipy.optimize import curve_fit
    y = 1 / (1 + np.exp(-k*(x-x0)))
    return y

 

 

项目:scrap    作者:BruceJohnJennerLawso    | 项目源码 | 文件源码

def __init__(self, data, mleValue, fitParameters=True, a=None, b=None):
        super(uniformModel, self).__init__(data)



        self.MLE = mleValue

        if(None in [a,b]):
            fitParameters = True

        if(fitParameters):
            self.b = max(self.getDataSet())
            self.a = min(self.getDataSet())

            def uniDist(x, a, b):
                return scipy.where((a<=x) & (x<=b), 1.0/float(b-a), 0.0)

            try:



                self.n, self.bins, patches = plt.hist(self.getDataSet(), self.getDatasetSize()/10, normed=1, facecolor='blue', alpha = 0.55)
                popt,pcov = curve_fit(uniDist,self.bins[:-1], self.n, p0=[self.a, self.b])
                ##plt.plot(bins[:-1], gaus(bins[:-1],*popt),'c-',label="Gaussian Curve with params\na=%f\nx0=%f\nsigma=%f" % (popt[0], popt[1], popt[2]), alpha=0.5)
                print "Fitted uniform distribution pdf curve to data with params a %f, b %f" % (popt[0], popt[1])
                self.a = popt[0]
                self.b = popt[1]
                ##self.sigma = popt[2]

                self.fitted = True
            except RuntimeError:
                print "Unable to fit data to uniform distribution pdf curve"
                raise
            except Warning:
                raise RuntimeError
        else:
            self.a = a
            self.b = b

 

 

项目:scrap    作者:BruceJohnJennerLawso    | 项目源码 | 文件源码

def __init__(self, data, mleValue, fitParameters=True, mean=None, sigma=None):
        super(normalModel, self).__init__(data)




        self.MLE = mleValue

        if(None in [mean, sigma]):
            fitParameters=True
        if(fitParameters):
            mean = Mean(self.getDataSet())      
            sigma = standardDeviation(self.getDataSet())
            try:

                def normDist(x, x0, sigma):
                    output = 1.0/sqrt(2*np.pi*(sigma**2))
                    output *= exp(-0.5*((x - x0)/sigma)**2)
                    return output

                self.n, self.bins, patches = plt.hist(self.getDataSet(), self.getDatasetSize()/10, normed=1, facecolor='blue', alpha = 0.55)
                popt,pcov = curve_fit(normDist,self.bins[:-1], self.n, p0=[mean, sigma])
                ##plt.plot(bins[:-1], gaus(bins[:-1],*popt),'c-',label="Gaussian Curve with params\na=%f\nx0=%f\nsigma=%f" % (popt[0], popt[1], popt[2]), alpha=0.5)
                print "Fitted gaussian curve to data with params x0 %f, sigma %f" % (popt[0], popt[1])
                self.x0 = popt[0]
                self.sigma = popt[1]

                self.fitted = True
            except RuntimeError:
                print "Unable to fit data to normal curve, runtime error"
                raise
            except Warning:
                raise RuntimeError
        else:
            self.x0 = mean
            self.sigma = sigma

 

 

项目:scrap    作者:BruceJohnJennerLawso    | 项目源码 | 文件源码

def __init__(self, data, mleValue, fitParameters=True, mean=None):
        super(exponentialModel, self).__init__(data)

        self.MLE = mleValue

        if(None in [mean]):
            fitParameters = True

        if(fitParameters):
            mean = Mean(self.getDataSet())      
            try:

                def expDist(x, x0):
                    return (exp(-(x/x0))/x0)

                self.n, self.bins, patches = plt.hist(self.getDataSet(), self.getDatasetSize()/10, normed=1, facecolor='blue', alpha = 0.55)
                popt,pcov = curve_fit(expDist,self.bins[:-1], self.n, p0=[mean])
                ##plt.plot(bins[:-1], gaus(bins[:-1],*popt),'c-',label="Gaussian Curve with params\na=%f\nx0=%f\nsigma=%f" % (popt[0], popt[1], popt[2]), alpha=0.5)
                print "Fitted gaussian curve to data with params x0 %f" % (popt[0])
                self.x0 = popt[0]
                ##self.sigma = popt[2]

                self.fitted = True
            except RuntimeError:
                print "Unable to fit data to exponential curve"
                raise
            except Warning:
                raise RuntimeError
        else:
            self.x0 = mean

 

 

项目:PyCS    作者:COSMOGRAIL    | 项目源码 | 文件源码

def calcslope(self, fmin=1./1000.0, fmax=1./2.0):
        """
        Measures the slope of the PS, between fmin and fmax.
        All info about this slope is sored into the dictionnary self.slope.

        Should this depend on self.flux ?? No, only the constructor depends on this !
        This is just fitting the powerspectrum as given by the constructor.

        """
        if fmin == None:
            fmin = self.f[1]
        if fmax == None:
            fmax = self.f[-1]

        reg = np.logical_and(self.f <= fmax, self.f >= fmin)

        fitx = np.log10(self.f[reg]).flatten()
        fity = np.log10(self.p[reg]).flatten()

        if not np.all(np.isfinite(fity)):
            print "Skipping calcsclope for flat function !"
            return

        self.slope = {}

        def func(x, m, h):
            return m*x + h
        popt = spopt.curve_fit(func, fitx, fity, p0=[0.0, 0.0])[0]
        sepfit = func(fitx, popt[0], popt[1]) # we evaluate the linear fit.

        self.slope["slope"] = popt[0]
        self.slope["f"] = 10.0**fitx
        self.slope["p"] = 10.0**sepfit
        self.slope["fmin"] = fmin
        self.slope["fmax"] = fmax

 

 

项目:upho    作者:yuzie007    | 项目源码 | 文件源码

def _create_initial_peak_position(self, frequencies, sf, prec=1e-12):
        position = frequencies[np.argmax(sf)]
        # "curve_fit" does not work well for extremely small initial guess.
        # To avoid this problem, "position" is rounded.
        # See also "http://stackoverflow.com/questions/15624070"
        if abs(position) < prec:
            position = 0.0
        return position

 

 

项目:pyrl    作者:frsong    | 项目源码 | 文件源码

def fit_psychometric(xdata, ydata, func=None, p0=None):
    """
    Fit a psychometric function.

    """
    if func is None:
        func = 'cdf_gaussian'

    if p0 is None:
        if func == 'cdf_gaussian':
            p0 = [np.mean(xdata), np.std(xdata)]
        elif func == 'cdf_gaussian_with_guessing':
            p0 = [np.mean(xdata), np.std(xdata), 0.1]
        else:
            raise ValueError("[ pycog.fittools.fit_psychometric ] Need initial guess p0.")
    if isinstance(func, str):
        func = fit_functions[func]

    popt_list, pcov_list = curve_fit(func, xdata, ydata, p0=p0)

    # Return parameters with names
    args = inspect.getargspec(func).args
    popt = OrderedDict()
    for name, value in zip(args[1:], popt_list):
        popt[name] = value

    return popt, func

 

 

项目:Dart_EnvGIS    作者:geojames    | 项目源码 | 文件源码

def expfit(x, p1, p2):
    return p1 * np.exp(p2*x)

# popt, pcov = curve_fit(func, xdata, ydata)
#   popt = optimized parameters matrix (in the order they ar in your func)
#   pcov = covariance stats
#   p0 = (p1,p2,...) - initial guesses at the coeff, optional

 

 

项目:OilLibrary    作者:NOAA-ORR-ERD    | 项目源码 | 文件源码

def normalized_cut_values(self, N=10):
        f_res, f_asph, _estimated = self.inert_fractions()
        cuts = list(self.culled_cuts())

        if len(cuts) == 0:
            if self.record.api is not None:
                oil_api = self.record.api
            else:
                oil_rho = self.density_at_temp(288.15)
                oil_api = est.api_from_density(oil_rho)

            BP_i = est.cut_temps_from_api(oil_api)
            fevap_i = np.cumsum(est.fmasses_flat_dist(f_res, f_asph))
        else:
            BP_i, fevap_i = zip(*[(c.vapor_temp_k, c.fraction) for c in cuts])

        popt, _pcov = curve_fit(_linear_curve, BP_i, fevap_i)
        f_cutoff = _linear_curve(732.0, *popt)  # center of asymptote (< 739)
        popt = popt.tolist() + [f_cutoff]

        fevap_i = np.linspace(0.0, 1.0 - f_res - f_asph, (N * 2) + 1)[1:]
        T_i = _inverse_linear_curve(fevap_i, *popt)

        fevap_i = fevap_i.reshape(-1, 2)[:, 1]
        T_i = T_i.reshape(-1, 2)[:, 0]

        above_zero = T_i > 0.0
        T_i = T_i[above_zero]
        fevap_i = fevap_i[above_zero]

        return T_i, fevap_i

你可能感兴趣的:(粤教版高中信息技术,python,.curve_fit,scipy,optimize)