- Chat Model API
虾条_花吹雪
SpringAIjava
聊天模型API为开发人员提供了将人工智能聊天完成功能集成到应用程序中的能力。它利用预训练的语言模型,如GPT(生成预训练转换器),以自然语言对用户输入生成类似人类的响应。API通常通过向人工智能模型发送提示或部分对话来工作,然后人工智能模型根据其训练数据和对自然语言模式的理解生成对话的完成或继续。然后将完成的响应返回给应用程序,应用程序可以将其呈现给用户或用于进一步处理。Spring人工智能聊天模
- Python 库 包 sentence-transformers
音程
机器学习人工智能python开发语言
sentence-transformers是一个非常流行的Python库,专门用于将文本(句子、段落、文档)转换为高质量的语义向量(嵌入)。它基于Transformer架构(如BERT、RoBERTa、DistilBERT等)的预训练模型,并在大量语义相似性数据上进行了微调,能够捕捉句子之间的深层语义关系。什么是sentence-transformers?项目地址:https://www.sber
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- SIMULINK开发项目实例 1000 例专栏之第663例:基于simulink的SVPWM技术的研究的三相电压源逆变器建模仿真
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏matlabsimulink
目录准备工作步骤详解第一步:创建Simulink项目第二步:选择并添加合适的库组件第三步:构建基本的三相电压源逆变器模型第四步:实现SVPWM算法第五步:仿真与调试第六步:结果分析第七步:优化与改进第八步:导出与部署总结三相电压源逆变器(VoltageSourceInverter,VSI)在电力电子中是将直流电转换为交流电的一种重要设备,广泛应用于电机驱动、不间断电源(UPS)、可再生能源系统等领
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 构建智能企业知识管理平台:动态知识图谱与语义检索系统
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据知识图谱人工智能ai
构建智能企业知识管理平台:动态知识图谱与语义检索系统关键词:知识管理平台、动态知识图谱、语义检索、知识图谱构建、语义检索算法摘要:本文详细探讨了构建智能企业知识管理平台的核心技术,重点介绍了动态知识图谱和语义检索系统的原理与实现。通过分析知识图谱的构建方法和语义检索算法,结合实际案例,展示了如何利用这些技术提升企业的知识管理水平。文章内容包括背景介绍、核心概念、算法原理、系统架构设计、项目实战以及
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- 巅峰对决,超三十万奖金等你挑战!第十届信也科技杯全球AI算法大赛火热开赛!
中杯可乐多加冰
前沿资讯分享科技人工智能算法计算机视觉机器学习深度学习
信也科技今年跟IJCAI和CIKM这两大全球顶级AI会议合作,这场比赛被全球人工智能顶会CIKM收录为官方赛事单元,获奖选手有机会全球人工智能顶会创造更大的影响力。一、赛事概况随着深度伪造技术的高度发展,人工智能产业走深向实,生成合成技术开始呈现工具化和普及化趋势。在生成合成内容质量显著提升的当下,基于换脸攻击的身份冒用和欺诈事件在全球范围内激增,严重威胁个人隐私和公共数据安全。第十届信也科技杯全
- 大模型 AI智能体Coze知识库从使用到实战详解
非著名架构师
大模型知识文档人工智能Coze知识库
一、Coze知识库核心价值解析1.1知识库技术架构创新Coze知识库采用四层混合架构设计,在2025年大模型应用中展现出独特优势:存储层:支持向量数据库(Qdrant)+图数据库(Neo4j)双引擎处理层:集成PDF/PPT/Excel等23种文件解析器检索层:混合检索算法(BM25+稠密检索+语义路由)应用层:RAG(检索增强生成)优化接口与传统方案相比,查询准确率提升42%,特别擅长处理:专业
- 【AI智能推荐系统】第二篇:深度学习在推荐系统中的架构设计与优化实践
DeepFaye
人工智能深度学习
第二篇:深度学习在推荐系统中的架构设计与优化实践提示语:“从Wide&Deep到Transformer,深度推荐模型如何突破性能瓶颈?本文将揭秘Netflix、淘宝都在用的深度学习推荐架构,手把手教你设计高精度推荐系统!”目录深度学习推荐系统的核心优势主流深度学习推荐架构解析2.1Wide&Deep模型2.2DeepFM与xDeepFM2.3神经协同过滤(NCF)2.4基于Transformer的
- Python设置国内镜像教程
wh3933
python开发语言
####引言Python是一种广泛使用的高级编程语言,用于各种编程任务,从简单的脚本到复杂的机器学习算法。在安装Python包时,通常需要从Python包索引(PyPI)下载。由于网络原因,直接从PyPI下载可能速度较慢,因此,使用国内的镜像源可以显著提高下载速度。本文将详细介绍如何在Python中设置国内镜像。####文章目的本篇文章旨在指导用户如何将Python的包管理工具`pip`的默认源切
- OPENAI中Assistants API的实现原理及示例代码python实现
dzend
aigcpythonai
OPENAI中AssistantsAPI的实现原理及示例代码前言OPENAI是一家人工智能公司,致力于研究和开发人工智能技术。其中,AssistantsAPI是OPENAI推出的一项人工智能服务,可以帮助开发者快速构建智能助手。本文将介绍AssistantsAPI的实现原理,并提供使用Python实现的示例代码。AssistantsAPI实现原理AssistantsAPI的实现原理主要包括以下几个
- React与Vue的区别?
扎西_德勒
vue.jsreact.jsjavascript
一、区别:1.语法Vue采用自己特有的模板语法;React是单向的,采用jsx语法创建react元素。2.监听数据变化的实现原理不同Vue2.0通过Object.defineproperty()方法的getter/setter属性,实现数据劫持,每次修改完数据会触发diff算法(双端对比)React默认是通过shouldComponentUpdata生命周期来决定是否需要渲染更新,再触发它的dif
- 2025年6月AIGC发展全景:技术轻量化、Agent产业化与伦理新挑战
Loving_enjoy
计算机学科论文创新点深度学习人工智能经验分享facebook
>**当一块消费级GPU能解高考数学题,当AI智能体接管医院诊断流程,我们正站在人机协作新纪元的门槛上**2025年6月,AIGC领域迎来关键转折点——**模型轻量化**让百亿参数算法飞入寻常设备,**多模态融合**打破文本与视觉的次元壁,而**Agent智能体**正从实验室概念蜕变为产业核心引擎。这场变革不仅重塑技术范式,更在重构商业逻辑与人类创造力边界。---###一、技术突破:垂直化、轻量化
- 代码随想录算法训练营第十一天
天天开心(∩_∩)
算法
LeetCode.150逆波兰表达式求值题目链接逆波兰表达式求值题解classSolution{publicintevalRPN(String[]tokens){Stackcstack=newStackset=newHashSetdeque=newLinkedListdeque.getLast()){deque.removeLast();}deque.add(val);}intpeek(){ret
- 【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等
十小大
超分辨率重建(理论+实战科研+应用)超分辨率重建人工智能图像处理深度学习计算机视觉图像超分pytorch
文章目录专栏简介专栏亮点适配人群相关说明关于答疑环境配置超分理解实现流程文章目录基础知识三个常用的SR框架数据集相关可解释性(论文中的可视化说明)图像超分(ImageSuper-Resolution)经典超分(ClassicalSR)任意尺度超分(Arbitrary-ScaleSR)高效/轻量化超分(Efficient/LightweightSR,ESR)盲超分/真实世界图像超分辨率(Blind/
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- 系统架构设计师论文分享-论软件架构复用
我的软考历程摘要2023年2月,我所在的公司通过了研发纱线MES系统的立项,该项目为国内纱线工厂提供SAAS服务,旨在提升纱线工厂的数字化和智能化水平。我在该项目中担任架构设计师,负责该项目的架构设计工作。本文结合我在该项目中的实践,详细论述了软件架构复用的实现过程。软件架构复用可以有效降低成本,提高开发速度和质量属性,架构复用方法的步骤分为三个过程:可复用资产的获取、架构复用的管理、架构复用的使
- 系统架构设计师论文分享-论软件体系结构的演化
我的软考历程摘要2023年2月,我所在的公司通过了研发纱线MES系统的立项,该系统为国内纱线工厂提供SAAS服务,旨在提高纱线工厂的数字化和智能化水平,我在该项目中担任架构设计师,负责该项目的架构设计工作。本文结合我在该项目中的实践,详细论述了软件体系结构的演化。系统上线后,为了满足新需求和适应新场景,就必须修改原有软件架构。在软件架构演化过程中遵循以下原则:演化适应新技术、有利于重构和重用、影响
- 系统架构设计师论文分享-论单元测试方法及其应用
码农卿哥
系统架构设计师系统架构单元测试
我的软考历程摘要2023年2月,我所在的公司做了开发纱线MES系统的决定,该系统为国内纱线工厂提供SAAS服务,旨在提高纱线工厂的智能化和数字化水平。我在该项目中被任命为系统架构设计师,全面掌管该项目的架构设计工作。本文将结合我在该项目中的架构设计工作经验,详细介绍如何把单元测试方法应用在项目中。在该项目中,我们采用了多种单元测试方法,包括静态测试和动态测试。静态测试在不运行程序的情况下,通过代码
- 解读国密非对称加密算法SM2
云水木石
详解国密算法数据安全
本文先介绍非对称加密算法,然后聊一聊椭圆曲线密码算法(EllipticCurveCryptography,ECC),最后才是本文的主题国密非对称加密算法SM2。因为我的数学知识有限,对于算法涉及的一些复杂的理论知识,也是不懂,所以本文不会涉及理论,仅仅从编程的角度解读一下SM2。在进行国密算法开发的这段时间,我主要参考的书籍是《深入浅出HTTPS:从原理到实战》,微信读书上也有电子版,如果你也是进
- 【归纳】C++入门算法模版总结(超级详细!!!)(包括高精度,排序,枚举,二分,搜索,动态规划等)
0.前言本文针对有一定算法基础的选手制作,收录了大部分算法的模板,详细解说可以点进去我提供的链接了解。或者进入我的主页给一点支持!本人也是一名新手,如果这篇文章有不严谨的地方或者不懂的地方可以在评论区留言,我会为你们一一解答的。【归纳】C++入门算法模版总结(包括高精度,排序,枚举,二分,搜索,动态规划等)(超级详细!!!)0.前言1.高精度1.1.单独实现1.1.1.高精度加法1.1.2.高精度
- (阳:算法霸权 / 阴:数据确权)→当GDPR类法规覆盖53%经济体量时,催生出隐私计算新范式
百态老人
人工智能机器学习深度学习算法
当GDPR类法规覆盖53%经济体量时,隐私计算新范式的兴起可归因于以下多维度因素的相互作用:一、算法霸权与数据确权的矛盾激化算法霸权的危害大型科技公司通过算法歧视、大数据杀熟等手段形成垄断优势,利用数据优势操控用户行为,导致消费者权益受损。这种"算法黑箱"不仅加剧市场不公平,还阻碍数据要素的自由流动。例如,算法框架的底层逻辑掌握在少数企业手中,产生"数据黑箱"问题。数据确权的立法需求数据权属不明确
- 扒开嵌入式硬件的底裤(上)!从 PCB 到 FPGA/IC 设计,小白到 CTO 的必学秘籍 硬核知识点全揭秘!从c语言入门到mcu与arm架构及外设相关
small_wh1te_coder
嵌入式内核嵌入式开发嵌入式硬件算法c汇编面试驱动开发单片机
【硬核揭秘】嵌入式硬件工程师的“底裤”:从入门到牛逼,你必须知道的一切!第一部分:破冰与认知——嵌入式硬件工程师的“世界观”嘿,各位C语言老铁,以及所有对“让硬件听你话”充满好奇的朋友们!我是你们的老朋友,一个常年“折腾”在代码和电路板之间的码农。今天,咱们要聊一个真正能让你“硬”起来的话题——如何成为一个合格、优秀、牛逼的嵌入式硬件工程师!你可能正坐在电脑前,敲着C语言代码,刷着力扣算法题,心里
- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- 【深度学习】神经网络剪枝方法的分类
烟锁池塘柳0
机器学习与深度学习深度学习神经网络剪枝
神经网络剪枝方法的分类摘要随着深度学习模型,特别是大语言模型(LLM)的参数量爆炸式增长,模型的部署和推理成本变得异常高昂。如何在保持模型性能的同时,降低其计算和存储需求,成为了工业界和学术界的核心议题。神经网络剪枝(Pruning)作为模型压缩的关键技术之一,应运而生。本文将解析剪枝技术的不同分类,深入探讨其原理、优缺点。文章目录神经网络剪枝方法的分类摘要1为什么我们需要剪枝?2分类方法一:剪什
- 基于条件风险价值CVaR的微网动态定价与调度策略(Matlab代码实现)
Ps.729
matlab开发语言
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、CVaR的理论基础及其在微网中的适用性1.CVaR的定义与优势2.微网应用场景适配性二、动态定价与调度模型的联合优化框架1.目标函数设计2.动态定价机制3.不确定性处理方法三、关键算法与求解策略1.随机规划与CVaR集成2.智能优化算法对比四、实证
- Python 图像分类入门
超龄超能程序猿
机器学习python分类开发语言
一、介绍图像分类作为深度学习的基础任务,旨在将输入图像划分到预定义的类别集合中。在实际的业务中,图像分类技术是比较常用的一种技术技能。例如,在安防监控中,可通过图像分类识别异常行为;在智能交通系统中,实现对交通标志和车辆类型的快速识别等。本文将通过安装包已有数据带你逐步了解使用Python进行图像分类的全过程。二、环境搭建在开始图像分类项目前,需要确保Python环境中安装了必要的库。主要包括:T
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 最长回文子串-leetCode-005
针对这个问题,共有四种解法,分别是暴力法,中心拓展法,动态规划,Manacher算法解法一:暴力法思路:枚举所有可能的子串,然后判断每个子串是否是回文串,最后找出最长的回文子串。classSolution{publicStringlongestPalindrome(Strings){intn=s.length();if(n==0){return"";}StringmaxPalindrome=s.s
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。