This is my vivid answer. When we were in childhood, our parents used to request us to recite the textbooks. There is a sentence below.
“Let perseverance be your engine and hope your fuel!”
“의지력이 당신의 동력이여 희망은 연료로 되어라!”
“让毅力成为你的引擎,让希望成为你的燃料!”
Let’s start! how can you recite this sentence?
From here
import numpy as np
import torch
from torch import nn
import torch.optim as optim
from matplotlib import pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
num_time_steps = 50
input_size = 1
hidden_size = 16
output_size = 1
lr = 0.01
class Net(nn.Module):
def __init__(self):
super().__init__()
self.rnn = nn.RNN(
input_size=input_size,
hidden_size=hidden_size,
num_layers=1,
batch_first=True,
)
for p in self.rnn.parameters():
nn.init.normal_(p, mean=0.0, std=0.001)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden_prev):
out, hidden_prev = self.rnn(x, hidden_prev)
# [1, seq, h] => [seq, h]
out = out.view(-1, hidden_size)
out = self.linear(out) # [seq, h] => [seq, 1]
out = out.unsqueeze(dim=0) # => [1, seq, 1]
return out, hidden_prev
model = Net()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)
hidden_prev = torch.zeros(1, 1, hidden_size)
for iter in range(6000):
start = np.random.randint(3, size=1)[0]
time_steps = np.linspace(start, start+10, num_time_steps)
data = np.sin(time_steps)
data = data.reshape(num_time_steps, 1)
x = torch.tensor(data[:-1]).float().view(1, num_time_steps -1, 1)
y = torch.tensor(data[1:]).float().view(1, num_time_steps -1, 1)
output, hidden_prev = model(x, hidden_prev)
hidden_prev = hidden_prev.detach()
loss = criterion(output, y)
model.zero_grad()
loss.backward()
optimizer.step()
if iter % 100 ==0:
print(f"Iteration:{iter} loss{loss.item()}")
start = np.random.randint(3, size=1)[0]
time_steps = np.linspace(start, start + 10, num_time_steps)
data = np.sin(time_steps)
data = data.reshape(num_time_steps, 1)
x = torch.tensor(data[:-1]).float().view(1, num_time_steps - 1, 1)
y = torch.tensor(data[1:]).float().view(1, num_time_steps - 1, 1)
predictions = []
input = x[:, 0, :]
for _ in range(x.shape[1]):
input = input.view(1, 1, 1)
(pred, hidden_prev) = model(input, hidden_prev)
input = pred
predictions.append(pred.detach().numpy().ravel()[0])
x = x.data.numpy().ravel()
y = y.data.numpy()
plt.scatter(time_steps[:-1], x.ravel(), s=90)
plt.plot(time_steps[:-1], x.ravel())
plt.scatter(time_steps[1:], predictions)
plt.show()
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
Thank you for the current age of knowledge sharing and the people willing to share it, thank you! The knowledge on this blog is what I’ve learned on this site, thanks for the support!