极市导读
本文结合YOLO v5的官方教程,分成了五个章节非常详细的讲解了YOLO v5在建筑工地中安全帽佩戴检测的应用。附有相关步骤的代码详解以及权重文件链接。>>极市双11现金福利,前往文末即可查看惊喜!
一、YOLO v5训练自己数据集教程
1.1 创建自己的数据集配置文件
1.2 创建每个图片对应的标签文件
1.3 文件放置规范
1.4 聚类得出先验框(可选)
1.5 选择一个你需要的模型
1.6 开始训练
1.7 看训练之后的结果
二、侦测
三、检测危险区域内是否有人
3.1 危险区域标注方式
3.2 执行侦测
3.3 效果:在危险区域里面的人体会被 红色框 选出来
四、生成 ONNX
五、增加数据集的分类
该项目是使用YOLOv5 v2.x
来训练在智能工地安全领域中头盔目标检测的应用,先来一波演示!
epoch = 50
分类 | P | R | mAP0.5 |
---|---|---|---|
总体 | 0.884 | 0.899 | 0.888 |
人体 | 0.846 | 0.893 | 0.877 |
头 | 0.889 | 0.883 | 0.871 |
安全帽 | 0.917 | 0.921 | 0.917 |
b981
epoch = 100
分类 | P | R | mAP0.5 |
---|---|---|---|
总体 | 0.886 | 0.915 | 0.901 |
人体 | 0.844 | 0.906 | 0.887 |
头 | 0.9 | 0.911 | 0.9 |
安全帽 | 0.913 | 0.929 | 0.916 |
psst
epoch = 100
分类 | P | R | mAP0.5 |
---|---|---|---|
总体 | 0.892 | 0.919 | 0.906 |
人体 | 0.856 | 0.914 | 0.897 |
头 | 0.893 | 0.913 | 0.901 |
安全帽 | 0.927 | 0.929 | 0.919 |
a66e
本文结合 YOLOv5官方教程 来写
Python >= 3.7Pytorch == 1.5.x
data/coco128.yaml
文件,创建自己的数据集配置文件 custom_data.yaml
# 训练集和验证集的 labels 和 image 文件的位置train: ./score/images/trainval: ./score/images/val# number of classesnc: 3# class namesnames: ['person', 'head', 'helmet']
.txt
文件,其规范如下:
每一行都是一个目标
类别序号是零索引开始的(从0开始)
每一行的坐标 class x_center y_center width height
格式
框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将x_center
和width
除以图像宽度,将y_center
和height
除以图像高度。代码如下:
import numpy as np
def convert(size, box):
"""
将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
:param size: 图片的尺寸:[w,h]
:param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
:return: 转换后的 [x,y,w,h]
"""
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
dw = np.float32(1. / int(size[0]))
dh = np.float32(1. / int(size[1]))
w = x2 - x1
h = y2 - y1
x = x1 + (w / 2)
y = y1 + (h / 2)
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return [x, y, w, h]
生成的 .txt
文件放置的名字是图片的名字,放置在 label 文件夹中,例如:
./score/images/train/00001.jpg # image
./score/labels/train/00001.txt # label
生成的 .txt 例子
1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374
./data/gen_anchors/clauculate_anchors.py
,修改数据集的路径
FILE_ROOT = r"xxx" # 根路径
ANNOTATION_ROOT = r"xxx" # 数据集标签文件夹路径
ANNOTATION_PATH = FILE_ROOT + ANNOTATION_ROOT
跑完会生成一个文件 anchors.txt
,里面有得出的建议先验框:
Best Accuracy = 79.72%
Best Anchors = [[14.74, 27.64], [23.48, 46.04], [28.88, 130.0], [39.33, 148.07], [52.62, 186.18], [62.33, 279.11], [85.19, 237.87], [88.0, 360.89], [145.33, 514.67]]
./models
下选择一个你需要的模型然后复制一份出来,将文件开头的 nc =
修改为数据集的分类数,下面是借鉴 ./models/yolov5s.yaml
来修改的
# parametersnc: 3 # number of classes <============ 修改这里为数据集的分类数depth_multiple: 0.33 # model depth multiplewidth_multiple: 0.50 # layer channel multiple# anchorsanchors: # <============ 根据 ./data/gen_anchors/anchors.txt 中的 Best Anchors 修改,需要取整(可选) - [14,27, 23,46, 28,130] - [39,148, 52,186, 62.,279] - [85,237, 88,360, 145,514]# YOLOv5 backbonebackbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, BottleneckCSP, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, BottleneckCSP, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, BottleneckCSP, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, BottleneckCSP, [1024, False]], # 9 ]# YOLOv5 headhead: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, BottleneckCSP, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, BottleneckCSP, [256, False]], # 17 [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, BottleneckCSP, [512, False]], # 20 [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, BottleneckCSP, [1024, False]], # 23 [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]
yolov5s
模型进行训练,权重也是基于 yolov5s.pt
来训练
python train.py --img 640 --batch 16 --epochs 10 --data ./data/custom_data.yaml --cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt
其中, yolov5s.pt
需要自行下载放在本工程的根目录即可,下载地址 官方权重
./runs
文件夹里面的每个 exp
文件里面的 weights/best.py
,里面还可以看到训练的效果
./inferenct/output/
文件夹下 运行命令:
python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
例如使用我的 s
权重检测图片,可以运行以下命令,侦测图片会保存在 ./inferenct/output/
文件夹下
python detect.py --source 图片路径 --weights ./weights/helmet_head_person_s.pt
./inferenct/output/
文件夹下 运行命令:
python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt
pip install onnx
python ./models/export.py --weights ./weights/helmet_head_person_s.pt --img 640 --batch 1
onnx
和 torchscript
文件会生成在 ./weights
文件夹中
SHWD
数据集里面没有 person
的类别,先将现有的自己的数据集执行脚本生成yolov5需要的标签文件 .txt
,之后再用 yolov5x.pt
加上 yolov5x.yaml
,使用指令检测出人体
python detect.py --save-txt --source ./自己数据集的文件目录 --weights ./weights/yolov5x.pt
yolov5
会推理出所有的分类,并在 inference/output
中生成对应图片的 .txt
标签文件;
修改 ./data/gen_data/merge_data.py
中的自己数据集标签所在的路径,执行这个python脚本,会进行 person
类型的合并 教程来源: https://github.com/PeterH0323/Smart_Construction
推荐阅读
【CV101录播】技术方案详解1:人流密度/河道污染/安全帽识别获奖算法
深入浅出的Yolov5核心基础知识完整讲解
详细记录u版YOLOv5目标检测ncnn实现
邀请3位好友参与抽奖助力,即可瓜分100元!数量有限,先到先得!
添加极市小助手微信(ID : cvmart2),备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳),即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群:每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~ △长按添加极市小助手 △长按关注极市平台,获取 最新CV干货 觉得有用麻烦给个在看啦~