大家好,本文中,我将和大家一起学习如何训练 LightGBM 模型来估计电子商务广告的点击率的推荐系统的例子。将在Criteo数据集上训练一个基于LightGBM的模型。
LightGBM是一个基于树的梯度提升学习算法框架。是基于分布式框架设计的,因而非常高效,具有以下优点:
训练速度快,效率高。
低内存的使用。
伟大的准确性。
支持并行和GPU学习。
能够处理大规模数据。
LightGBM梯度提升树算法,推荐原理是基于内容的过滤,用于在基于内容的问题中进行快速训练和低内存使用。
接下来我们一起看个具体的案例,更加深刻的理解LightGBM是如何被用于推荐系统中的。
本文由技术群粉丝分享,项目源码、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友
方式①、添加微信号:dkl88191,备注:来自CSDN +研究方向
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
import sys
import os
import numpy as np
import lightgbm as lgb
import papermill as pm
import scrapbook as sb
import pandas as pd
import category_encoders as ce
from tempfile import TemporaryDirectory
from sklearn.metrics import roc_auc_score, log_loss
import recommenders.models.lightgbm.lightgbm_utils as lgb_utils
import recommenders.datasets.criteo as criteo
print("System version: {}".format(sys.version))
print("LightGBM version: {}".format(lgb.__version__))
System version: 3.6.7 |Anaconda, Inc.| (default, Oct 23 2018, 19:16:44)
[GCC 7.3.0]
LightGBM version: 2.2.1
现在设置 LightGBM 的主要相关参数。基本上,该任务是一个二分类 (预测点击或不点击),因此目标函数设置为二分类 logloss,并使用 AUC 指标作为数据集类中不平衡的影响较小的指标。
通常,我们可以调整模型中的
叶子数量(MAX_LEAF)
每个叶子的最小数据数量(MIN_DATA)
树的最大数量(NUM_OF_TREES)
树的学习率(TREE_LEARNING_RATE)
避免过拟合的早停轮数(EARLY_STOPPING_ROUNDS)
以获得更好的模型性能。
可以在中找到一些关于如何调优这些参数的建议。
MAX_LEAF = 64
MIN_DATA = 20
NUM_OF_TREES = 100
TREE_LEARNING_RATE = 0.15
EARLY_STOPPING_ROUNDS = 20
METRIC = "auc"
SIZE = "sample"
params = {
'task': 'train',
'boosting_type': 'gbdt',
'num_class': 1,
'objective': "binary",
'metric': METRIC,
'num_leaves': MAX_LEAF,
'min_data': MIN_DATA,
'boost_from_average': True,
#set it according to your cpu cores.
'num_threads': 20,
'feature_fraction': 0.8,
'learning_rate': TREE_LEARNING_RATE,
}
这里使用 CSV 作为示例数据输入。我们的示例数据是来自 Criteo数据集。Criteo数据集是一个著名的行业基准数据集,用于开发CTR预测模型,它经常被研究论文采用作为评估数据集。原始数据集对于轻量级演示来说太大了,因此我们从其中抽取一小部分作为演示数据集。
Criteo中有39列特征,其中13列是数值特征(I1-I13),其他26列是类别特征(C1-C26)。
数据传送门:https://www.kaggle.com/c/criteo-display-ad-challenge
nume_cols = ["I" + str(i) for i in range(1, 14)]
cate_cols = ["C" + str(i) for i in range(1, 27)]
label_col = "Label"
header = [label_col] + nume_cols + cate_cols
with TemporaryDirectory() as tmp:
all_data = criteo.load_pandas_df(size=SIZE, local_cache_path=tmp, header=header)
display(all_data.head())
首先,从原始的所有数据中切割三个集合
train_data (前80%)
valid_data (中间10%)
test_data (最后10%)
值得注意的是,考虑到Criteo是一种时间序列流数据,这在推荐场景中也很常见,我们按其顺序对数据进行了拆分。
# split data to 3 sets
length = len(all_data)
train_data = all_data.loc[:0.8*length-1]
valid_data = all_data.loc[0.8*length:0.9*length-1]
test_data = all_data.loc[0.9*length:]
考虑到 LightGBM 可以自行处理低频特征和缺失值,在基本使用中,我们只使用序号编码器对类字符串的分类特征进行编码。
ord_encoder = ce.ordinal.OrdinalEncoder(cols=cate_cols)
def encode_csv(df, encoder, label_col, typ='fit'):
if typ == 'fit':
df = encoder.fit_transform(df)
else:
df = encoder.transform(df)
y = df[label_col].values
del df[label_col]
return df, y
train_x, train_y = encode_csv(train_data, ord_encoder, label_col)
valid_x, valid_y = encode_csv(valid_data, ord_encoder, label_col, 'transform')
test_x, test_y = encode_csv(test_data, ord_encoder, label_col, 'transform')
print('Train Data Shape: X: {trn_x_shape}; Y: {trn_y_shape}.\nValid Data Shape: X: {vld_x_shape}; Y: {vld_y_shape}.\nTest Data Shape: X: {tst_x_shape}; Y: {tst_y_shape}.\n'
.format(trn_x_shape=train_x.shape,
trn_y_shape=train_y.shape,
vld_x_shape=valid_x.shape,
vld_y_shape=valid_y.shape,
tst_x_shape=test_x.shape,
tst_y_shape=test_y.shape,))
train_x.head()
Train Data Shape: X: (80000, 39); Y: (80000,).
Valid Data Shape: X: (10000, 39); Y: (10000,).
Test Data Shape: X: (10000, 39); Y: (10000,).
当超参数和数据都准备就绪时,我们可以创建一个模型:
lgb_train = lgb.Dataset(train_x, train_y.reshape(-1), params=params, categorical_feature=cate_cols)
lgb_valid = lgb.Dataset(valid_x, valid_y.reshape(-1), reference=lgb_train, categorical_feature=cate_cols)
lgb_test = lgb.Dataset(test_x, test_y.reshape(-1), reference=lgb_train, categorical_feature=cate_cols)
lgb_model = lgb.train(params,
lgb_train,
num_boost_round=NUM_OF_TREES,
early_stopping_rounds=EARLY_STOPPING_ROUNDS,
valid_sets=lgb_valid,
categorical_feature=cate_cols)
[1] valid_0's auc: 0.728695
Training until validation scores don't improve for 20 rounds.
[2] valid_0's auc: 0.742373
[3] valid_0's auc: 0.747298
[4] valid_0's auc: 0.747969
...
[39] valid_0's auc: 0.756966
Early stopping, best iteration is:
[19] valid_0's auc: 0.763092
现在看看模型的性能如何:
test_preds = lgb_model.predict(test_x)
auc = roc_auc_score(np.asarray(test_y.reshape(-1)), np.asarray(test_preds))
logloss = log_loss(np.asarray(test_y.reshape(-1)), np.asarray(test_preds), eps=1e-12)
res_basic = {"auc": auc, "logloss": logloss}
print(res_basic)
sb.glue("res_basic", res_basic)
{'auc': 0.7674356153037237,
'logloss': 0.466876775528735}
接下来,由于 LightGBM 对密集的数值特征有较好的有效处理能力,我们尝试将原始数据中的所有分类特征转换为数值特征,通过标签编码和二分类编码。同样由于Criteo的序列特性,我们所采用的标签编码是一个一个执行的,也就是说我们是根据每个样本之前的前一个样本的信息(sequence label-encoding和sequence count-encoding)对样本进行有序编码。此外,我们还对低频分类特征进行了筛选,并用数值特征对应列的均值来填补缺失的值。
在 lgb_utils.NumEncoder
,主要步骤如下。
首先,我们将低频分类特征转换为"LESS"
,将缺失的分类特征转换为"UNK"
。
其次,我们将缺失的数值特征转换为相应列的均值。
第三,类似字符串的分类特征是按顺序编码的Ordinal-encoding。
然后,我们对样本中的分类特征逐个进行目标编码。对于每个样本,将其前一个样本的标签和计数信息添加到数据中,并产生新的特征。在形式上,for ,我们添加 作为当前样本的新标签特征,其中 是当前样本中要编码的类别,因此是前样本的数量,是检查前样本是否包含(是否)的指示函数。同时,我们还增加了的计数频率,即,作为一个新的计数特征。
最后,在Ordinal-encoding结果的基础上,将Binary-encoding结果作为新列添加到数据中。
注意,上述过程中使用的统计数据只在拟合训练集时更新,而在转换测试集时保持静态,因为测试数据的标签应该是未知的。
label_col = 'Label'
num_encoder = lgb_utils.NumEncoder(cate_cols, nume_cols, label_col)
train_x, train_y = num_encoder.fit_transform(train_data)
valid_x, valid_y = num_encoder.transform(valid_data)
test_x, test_y = num_encoder.transform(test_data)
del num_encoder
print('Train Data Shape: X: {trn_x_shape}; Y: {trn_y_shape}.\nValid Data Shape: X: {vld_x_shape}; Y: {vld_y_shape}.\nTest Data Shape: X: {tst_x_shape}; Y: {tst_y_shape}.\n'
.format(trn_x_shape=train_x.shape,
trn_y_shape=train_y.shape,
vld_x_shape=valid_x.shape,
vld_y_shape=valid_y.shape,
tst_x_shape=test_x.shape,
tst_y_shape=test_y.shape,))
2019-04-29 11:26:21,158 [INFO] Filtering and fillna features
100%|██████████| 26/26 [00:02<00:00, 12.36it/s]
100%|██████████| 13/13 [00:00<00:00, 711.59it/s]
2019-04-29 11:26:23,286 [INFO] Ordinal encoding cate features
2019-04-29 11:26:24,680 [INFO] Target encoding cate features
100%|██████████| 26/26 [00:03<00:00, 6.72it/s]
2019-04-29 11:26:28,554 [INFO] Start manual binary encoding
100%|██████████| 65/65 [00:04<00:00, 15.87it/s]
100%|██████████| 26/26 [00:02<00:00, 8.17it/s]
2019-04-29 11:26:35,518 [INFO] Filtering and fillna features
100%|██████████| 26/26 [00:00<00:00, 171.81it/s]
100%|██████████| 13/13 [00:00<00:00, 2174.25it/s]
2019-04-29 11:26:35,690 [INFO] Ordinal encoding cate features
2019-04-29 11:26:35,854 [INFO] Target encoding cate features
100%|██████████| 26/26 [00:00<00:00, 53.42it/s]
2019-04-29 11:26:36,344 [INFO] Start manual binary encoding
100%|██████████| 65/65 [00:03<00:00, 20.02it/s]
100%|██████████| 26/26 [00:01<00:00, 17.67it/s]
2019-04-29 11:26:41,081 [INFO] Filtering and fillna features
100%|██████████| 26/26 [00:00<00:00, 158.08it/s]
100%|██████████| 13/13 [00:00<00:00, 2203.78it/s]
2019-04-29 11:26:41,267 [INFO] Ordinal encoding cate features
2019-04-29 11:26:41,429 [INFO] Target encoding cate features
100%|██████████| 26/26 [00:00<00:00, 53.08it/s]
2019-04-29 11:26:41,922 [INFO] Start manual binary encoding
100%|██████████| 65/65 [00:03<00:00, 20.10it/s]
100%|██████████| 26/26 [00:01<00:00, 18.37it/s]
Train Data Shape: X: (80000, 268); Y: (80000, 1).
Valid Data Shape: X: (10000, 268); Y: (10000, 1).
Test Data Shape: X: (10000, 268); Y: (10000, 1).
lgb_train = lgb.Dataset(train_x, train_y.reshape(-1), params=params)
lgb_valid = lgb.Dataset(valid_x, valid_y.reshape(-1), reference=lgb_train)
lgb_model = lgb.train(params,
lgb_train,
num_boost_round=NUM_OF_TREES,
early_stopping_rounds=EARLY_STOPPING_ROUNDS,
valid_sets=lgb_valid)
[1] valid_0's auc: 0.731759
Training until validation scores don't improve for 20 rounds.
[2] valid_0's auc: 0.747705
[3] valid_0's auc: 0.751667
...
[58] valid_0's auc: 0.770408
[59] valid_0's auc: 0.770489
Early stopping, best iteration is:
[39] valid_0's auc: 0.772136
test_preds = lgb_model.predict(test_x)
auc = roc_auc_score(np.asarray(test_y.reshape(-1)), np.asarray(test_preds))
logloss = log_loss(np.asarray(test_y.reshape(-1)), np.asarray(test_preds), eps=1e-12)
res_optim = {"auc": auc, "logloss": logloss}
print(res_optim)
sb.glue("res_optim", res_optim)
{'auc': 0.7757371640011422,
'logloss': 0.4606505068849181}
现在我们完成了LightGBM的基本训练和测试,接下来保存并重新加载模型,然后再次评估它。
with TemporaryDirectory() as tmp:
save_file = os.path.join(tmp, r'finished.model')
lgb_model.save_model(save_file)
loaded_model = lgb.Booster(model_file=save_file)
# eval the performance again
test_preds = loaded_model.predict(test_x)
auc = roc_auc_score(np.asarray(test_y.reshape(-1)), np.asarray(test_preds))
logloss = log_loss(np.asarray(test_y.reshape(-1)), np.asarray(test_preds), eps=1e-12)
print({"auc": auc, "logloss": logloss})
{'auc': 0.7757371640011422,
'logloss': 0.4606505068849181}