神经网络预测结果都一样,神经网络预测结果分析

请问MATLAB中神经网络预测结果应该怎么看?求大神解答

从图中NeuralNetwork可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。经过482次迭代循环完成训练,耗时5秒。

相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。

达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。

谷歌人工智能写作项目:神经网络伪原创

BP神经网络与 Modflow的预测结果对比

根据训练好的BP神经网络模型,对区内6个点2005~2015年的年沉降量进行预测(图8.36)好文案。从图8.36中可以看出,随着开采量的减小,水位的上升,各点的年沉降量逐渐减小,变化趋势也基本一致。

预测到2015年,各点的年沉降量比2004年减小了21.8~56.8mm;年沉降量最大的点是位于芦台镇附近的CJ6,沉降量为21.6mm;年沉降量最小的点是位于研究区西侧的CJ2,沉降量只有6.6mm。

图8.36 各监测点年沉降量预测图以2004年各个监测点的实测累积沉降量为起点,将神经网络预测的年沉降量进行累加,从而与Modflow数值模型的预测结果相对比(图8.37)。

从图8.37中可以看出这两种方法在各监测点处的预测结果基本一致。在局部点处(CJ2)相差较大,这主要是由于该点临近区域交界处,地面沉降过程受到邻区地下水开采的影响,使得BP网络模型的预测效果出现偏差。

BP网络与 Modflow数值模型预测结果的相对误差见表8.18。从表8.18中可以看出,各点的年均相对误差在0.75%~6.86%之间,平均为2.9%。

说明本次建立的BP神经网络模型基本可以达到Modflow数值模型的预测效果。表8.18 BP网络预测相对误差表续表图8.37 各监测点累积沉降量预测对比图。

为什么我的BP神经网络的预测输出结果几乎是一样的呢

bp神经网络是有一定缺陷的,比如容易陷入局部极小值,还有训练的结果依赖初始随机权值,这就好比你下一个山坡,如果最开始的方向走错了,那么你可能永远也到不了正确的山脚。

可以说bp神经网络很难得到正确答案,也没有唯一解,有些时候只能是更多次地尝试、修改参数,这个更多依赖自己的经验,通俗点说就是“你觉得行了,那就是行了”,而不像1+1=2那样确切。

如果有耐心,确定方法没问题,那么接下来需要做的就是不停地尝试、训练,得到你想要的结果。另外,我不知道你预测的是什么,是时间序列么?比如证券?

这种预测,比较重要的就是输入参数是否合适,这个直接决定了结果精度。

如何得到神经网络预测结果 20

如果你用9——11年的数据不经过预测12——19年的数据就想得到第20年的数据的做法是不合理的,神经网络的预测讲求时间序列的连续性,你可以在编写maltab程序的时候才用递归的方法调用神经网络工具箱,加上对预测数据进行一定的格式操作就可以了,这样你想读到第几年的数据都行。

为什么我的BP神经网络的预测输出结果几乎是一样的呢

最大的可能性是没有归一化。具体原因见下:下面这个是经典的Sigmoid函数的曲线图:如果不进行归一化,则过大的输入x将会导致Sigmoid函数进入平坦区,全部趋近于1,即最后隐层的输出全部趋同。

输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。

使用matlab进行归一化通常使用mapminmax函数,它的用法:[Y,PS] = mapminmax(X,YMIN,YMAX)——将数据X归一化到区间[YMIN,YMAX]内,YMIN和YMAX为调用mapminmax函数时设置的参数,如果不设置这两个参数,这默认归一化到区间[-1, 1]内。

标准化处理后的数据为Y,PS为记录标准化映射的结构体。我们一般归一化到(0,1)区间内。

BP神经网络预测,预测结果与样本数据的理解。

输入节点数是3,说明输入向量的行数m=3,你给的样本只有1行,是不是不全?输出节点只有一个,说明每3个输入数据对应一个预测的输出数据。其实样本数量很少,就不需要训练那么多次了,训练了也白训练。

你问“这样的预测结果代表着什么?”,你也没说这些数据在现实中是什么,怎么会知道呢。

BP神经网络做数据预测,预测出来结果感觉不对,求大神指导

我用神经网络做预测,可是每次运行的结果都不同,请问是什么原因?

神经网络预测模型输出预测结果为什么总在0-1之间

模型归一化,预测肯定也要反归一化。输出再反归一化就好了。比如,一组训练的数据,有最大值max,最小值min,假设区间长度cd=max-min。

归一化就是(x-min)/cd,反归一化就是x*cd+min。

 

你可能感兴趣的:(神经网络,深度学习,机器学习)