基于WordNet的英文同义词、近义词相似度评估及代码实现

 

   1.确定要解决的问题及意义

    在基于代码片段的分类过程中,由于程序员对数据变量名的选取可能具有一定的规范性,在某一特定业务处理逻辑代码中,可能多个变量名之间具有关联性或相似性(如“trade”(商品交易)类中,可能存在“business”,“transaction”,“deal”等同义词),在某些情况下,它们以不同的词语表达了相同的含义。因此,为了能够对代码片段做出更加科学的类别判断,更好地识别这些同义词,我们有必要寻找一种能够解决避免由于同义词的存在而导致误分类的方法。说白了,就是要去判断词语之间的相似度(即确定是否为近义词),并找出代码段中出现次数最多的一组语义。

 

 2.要达到的效果

    即在给定的代码段中,能够发现哪些词是属于同义词,并且能够实现分类。

    Eg.public static void function(){

         String trade=”money”;

         Int deal=5;

         Long long business=0xfffffff;

         Boolen transaction=TRUE;

       ……

  }

  Output:同义词有:trade,deal,business,transaction

  这段代码很可能与trade有关

 

 3.初识WordNet

  问题确定了之后,通过网上的搜索,发现了WordNetword2vec这两个相关的词汇。(后知后觉,这本身就是一个找近义词的过程)

 

  3.1 WordNet是什么

  首先,来看WordNet。搜了一下相关介绍:

  WordNet是一个由普林斯顿大学认识科学实验室在心理学教授乔治·A·米勒的指导下建立和维护的英语字典。开发工作从1985年开始,从此以后该项目接受了超过300万美元的资助(主要来源于对机器翻译有兴趣的政府机构)。

  由于它包含了语义信息,所以有别于通常意义上的字典。WordNet根据词条的意义将它们分组,每一个具有相同意义的字条组称为一个synset(同义词集合)。WordNet为每一个synset提供了简短,概要的定义,并记录不同synset之间的语义关系。

  WordNet的开发有两个目的:

    它既是一个字典,又是一个辞典,它比单纯的辞典或词典都更加易于使用。

    支持自动的文本分析以及人工智能应用。

  WordNet内部结构

    在WordNet中,名词动词形容词副词各自被组织成一个同义词的网络,每个同义词集合都代表一个基本的语义概念,并且这些集合之间也由各种关系连接。(一个多义词将出现在它的每个意思的同义词集合中)。在WordNet的第一版中(标记为1.x),四种不同词性的网络之间并无连接。WordNet的名词网络是第一个发展起来的。

名词网络的主干是蕴涵关系的层次(上位/下位关系),它占据了关系中的将近80%。层次中的最顶层是11个抽象概念,称为基本类别始点(unique beginners),例如实体(entity,“有生命的或无生命的具体存在”),心理特征(psychological feature,“生命有机体的精神上的特征)。名词层次中最深的层次是16个节点。

                                                                                                                                                       (wikipedia)

         通俗地来说,WordNet是一个结构化很好的知识库,它不但包括一般的词典功能,另外还有词的分类信息。目前,基于WordNet的方法相对来说比较成熟,比如路径方法 (lch)、基于信息论方法(res)等。(详见参考文献)

 

    3.2 WordNet的安装与配置

  有了WordNet ,也就等于是有了我们所要的单词库。所以,暂时先不考虑相似度的计算,把WordNet下载下来再说。

    参考http://hi.baidu.com/buptyoyo/item/f13dfe463c061e3afb896028。顺利地下载,安装以及跑demo。

    之后,一起来看一下WordNet的文件结构:

 基于WordNet的英文同义词、近义词相似度评估及代码实现_第1张图片

    bin目录下,有可执行文件WordNet 2.1.exe:

 基于WordNet的英文同义词、近义词相似度评估及代码实现_第2张图片

  基于WordNet的英文同义词、近义词相似度评估及代码实现_第3张图片

           可以看到,WordNet对所有的英文单词都进行的分类,并且形成了一棵语义树。在本例中,entity——>abstract entity——>abstraction——>attribute——>state——>feeling——> emotion——>love;

从叶子节点到根节点

      WordNet名次分类中的25个基本类:

 基于WordNet的英文同义词、近义词相似度评估及代码实现_第4张图片

    dict目录里面存放的就是资源库了,可以看到,它以形容词,副词,名词,动词来分类:

 基于WordNet的英文同义词、近义词相似度评估及代码实现_第5张图片

    doc为WordNet的用户手册文件文件夹

    lib为WordNet软件使用Windows资源的函数库

    src为源码文件夹

 

 4.解决问题的大致思路

    我们首先以 WordNet 的词汇语义分类作为基础,抽取出其中的同义词,然后采用基于向量空间的方法计算出相似度。工作流程如下:

         基于WordNet的英文同义词、近义词相似度评估及代码实现_第6张图片

 5.基于WordNet的相似度计算

         以下摘自:《基于WordNet的英语词语相似度计算》

         5.1   特征提取

   基于WordNet的英文同义词、近义词相似度评估及代码实现_第7张图片

         5.2   意义相似度和词语相似度的计算

       基于WordNet的英文同义词、近义词相似度评估及代码实现_第8张图片

           基于WordNet的英文同义词、近义词相似度评估及代码实现_第9张图片

         基于WordNet的英文同义词、近义词相似度评估及代码实现_第10张图片

 

 

   6.实现效果

   基于WordNet的英文同义词、近义词相似度评估及代码实现_第11张图片

                          与“trade”的相似度比较:

基于WordNet的英文同义词、近义词相似度评估及代码实现_第12张图片 分析: 

 

先看第一组:trade vs trade

 

  自己和自己当然是相似度100%

 

再看第二组:trade#n#5   vs deal#n#1

 

  相似度竟然和第一组是一样的!根据结果,trade作为名词时,它的第5种含义和deal作为名词时的第1种含义是完全相似的。让我们去库里看个究竟:

  trade#n#5:

基于WordNet的英文同义词、近义词相似度评估及代码实现_第13张图片

  deal#n#1:基于WordNet的英文同义词、近义词相似度评估及代码实现_第14张图片

再来看一组不是很好理解的:

 trade#n#7   vs deal#n#2

 

    他们的相似度达到了0.14+,算是比较高的了,这是为什么呢?

 

  trade#n#7:

基于WordNet的英文同义词、近义词相似度评估及代码实现_第15张图片

  sunshine#n#2:

基于WordNet的英文同义词、近义词相似度评估及代码实现_第16张图片

    相信聪明的你一定明白了为什么。

 

与“cat”的相似度比较:  

基于WordNet的英文同义词、近义词相似度评估及代码实现_第17张图片

   7.代码分析

     工程结构图:

                基于WordNet的英文同义词、近义词相似度评估及代码实现_第18张图片

     test.java

 1 package JWordNetSim.test;
 2 
 3 import java.io.FileInputStream;
 4 import java.util.HashMap;
 5 import java.util.Map;
 6 
 7 import net.didion.jwnl.JWNL;
 8 import net.didion.jwnl.data.IndexWord;
 9 import net.didion.jwnl.data.POS;
10 import net.didion.jwnl.dictionary.Dictionary;
11 import shef.nlp.wordnet.similarity.SimilarityMeasure;
12 
13 /**
14  * A simple test of this WordNet similarity library.
15  * @author Mark A. Greenwood
16  */
17 public class Test
18 {
19     public static void main(String[] args) throws Exception
20     {    
21         //在运行代码前,必须在本机上安装wordnet2.0,只能装2.0,装了2.1会出错
22         JWNL.initialize(new FileInputStream("D:\\JAVAProjectWorkSpace\\jwnl\\JWordNetSim\\test\\wordnet.xml"));
23         
24         //建议一个映射去配置相关参数
25         Map<String,String> params = new HashMap<String,String>();
26         
27         //the simType parameter is the class name of the measure to use
28         params.put("simType","shef.nlp.wordnet.similarity.JCn");
29         
30         //this param should be the URL to an infocontent file (if required
31         //by the similarity measure being loaded)
32         params.put("infocontent","file:D:\\JAVAProjectWorkSpace\\jwnl\\JWordNetSim\\test\\ic-bnc-resnik-add1.dat");
33         
34         //this param should be the URL to a mapping file if the
35         //user needs to make synset mappings
36         params.put("mapping","file:D:\\JAVAProjectWorkSpace\\jwnl\\JWordNetSim\\test\\domain_independent.txt");
37         
38         //create the similarity measure
39         SimilarityMeasure sim = SimilarityMeasure.newInstance(params);
40         
41         //取词
42 //        Dictionary dict = Dictionary.getInstance();        
43 //        IndexWord word1 = dict.getIndexWord(POS.NOUN, "trade");            //这里把trade和dog完全定义为名词来进行处理
44 //        IndexWord word2 = dict.getIndexWord(POS.NOUN,"dog");                //
45 //        
46 //        //and get the similarity between the first senses of each word
47 //        System.out.println(word1.getLemma()+"#"+word1.getPOS().getKey()+"#1  " + word2.getLemma()+"#"+word2.getPOS().getKey()+"#1  " + sim.getSimilarity(word1.getSense(1), word2.getSense(1)));        
48 ////        
49 //        //get similarity using the string methods (note this also makes use
50 //        //of the fake root node)
51 //        System.out.println(sim.getSimilarity("trade#n","deal#n"));
52         
53         //get a similarity that involves a mapping
54         System.out.println(sim.getSimilarity("trade", "trade"));
55         System.out.println(sim.getSimilarity("trade", "deal"));
56         System.out.println(sim.getSimilarity("trade", "commerce"));
57         System.out.println(sim.getSimilarity("trade", "transaction"));        
58         System.out.println(sim.getSimilarity("trade", "finance"));
59         System.out.println(sim.getSimilarity("trade", "financial"));
60         System.out.println(sim.getSimilarity("trade", "business"));
61         System.out.println(sim.getSimilarity("trade", "economy"));        
62         System.out.println(sim.getSimilarity("trade", "school"));
63         System.out.println(sim.getSimilarity("trade", "dog"));
64         System.out.println(sim.getSimilarity("trade", "cat"));
65         System.out.println(sim.getSimilarity("trade", "book"));
66         System.out.println(sim.getSimilarity("trade", "sunshine"));
67         System.out.println(sim.getSimilarity("trade", "smile"));
68         System.out.println(sim.getSimilarity("trade", "nice"));
69         System.out.println(sim.getSimilarity("trade", "hardly"));
70         System.out.println(sim.getSimilarity("trade", "beautiful"));
71     }
72 }

    SimilarityMeasure.java

  1 package shef.nlp.wordnet.similarity;
  2 
  3 import java.io.BufferedReader;
  4 import java.io.InputStreamReader;
  5 import java.net.URL;
  6 import java.util.Arrays;
  7 import java.util.HashMap;
  8 import java.util.HashSet;
  9 import java.util.LinkedHashMap;
 10 import java.util.Map;
 11 import java.util.Set;
 12 
 13 import net.didion.jwnl.JWNLException;
 14 import net.didion.jwnl.data.IndexWord;
 15 import net.didion.jwnl.data.POS;
 16 import net.didion.jwnl.data.Synset;
 17 import net.didion.jwnl.dictionary.Dictionary;
 18 
 19 /**
 20  * An abstract notion of a similarity measure that all provided
 21  * implementations extend.
 22  * @author Mark A. Greenwood
 23  */
 24 public abstract class SimilarityMeasure
 25 {    
 26     /**
 27      * A mapping of terms to specific synsets. Usually used to map domain
 28      * terms to a restricted set of synsets but can also be used to map
 29      * named entity tags to appropriate synsets.
 30      */
 31     private Map<String,Set<Synset>> domainMappings = new HashMap<String,Set<Synset>>();
 32     
 33     /**
 34      * The maximum size the cache can grow to
 35      */
 36     private int cacheSize = 5000;
 37     
 38     /**
 39      * To speed up computation of the similarity between two synsets
 40      * we cache each similarity that is computed so we only have to
 41      * do each one once.
 42      */
 43     private Map<String,Double> cache = new LinkedHashMap<String,Double>(16,0.75f,true)
 44     {
 45         public boolean removeEldestEntry(Map.Entry<String,Double> eldest)
 46         {
 47             //if the size is less than zero then the user is asking us
 48             //not to limit the size of the cache so return false
 49             if (cacheSize < 0) return false;
 50             
 51             //if the cache has crown bigger than it's max size return true
 52             return size() > cacheSize;
 53         }
 54     }; 
 55     
 56     /**
 57      * Get a previously computed similarity between two synsets from the cache.
 58      * @param s1 the first synset between which we are looking for the similarity.
 59      * @param s2 the other synset between which we are looking for the similarity.
 60      * @return The similarity between the two sets or null
 61      *         if it is not in the cache.
 62      */
 63     protected final Double getFromCache(Synset s1, Synset s2)
 64     {
 65         return cache.get(s1.getKey()+"-"+s2.getKey());
 66     }
 67     
 68     /**
 69      * Add a computed similarity between two synsets to the cache so that
 70      * we don't have to compute it if it is needed in the future.
 71      * @param s1 one of the synsets between which we are storring a similarity.
 72      * @param s2 the other synset between which we are storring a similarity.
 73      * @param sim the similarity between the two supplied synsets.
 74      * @return the similarity score just added to the cache.
 75      */
 76     protected final double addToCache(Synset s1, Synset s2, double sim)
 77     {
 78         cache.put(s1.getKey()+"-"+s2.getKey(),sim);
 79         
 80         return sim;
 81     }
 82     
 83     /**
 84      * Configures the similarity measure using the supplied parameters.
 85      * @param params a set of key-value pairs that are used to configure
 86      *        the similarity measure. See concrete implementations for details
 87      *        of expected/possible parameters. 
 88      * @throws Exception if an error occurs while configuring the similarity measure.
 89      */
 90     protected abstract void config(Map<String,String> params) throws Exception;
 91     
 92     /**
 93      * Create a new instance of a similarity measure.
 94      * @param confURL the URL of a configuration file. Parameters are specified
 95      *        one per line as key:value pairs.
 96      * @return a new instance of a similairy measure as defined by the
 97      *         supplied configuration URL.
 98      * @throws Exception if an error occurs while creating the similarity measure.
 99      */
100     public static SimilarityMeasure newInstance(URL confURL) throws Exception
101     {
102         //create map to hold the key-value pairs we are going to read from
103         //the configuration file
104         Map<String,String> params = new HashMap<String,String>();
105         
106         //create a reader for the config file
107         BufferedReader in = null;
108         
109         try
110         {
111             //open the config file
112             in = new BufferedReader(new InputStreamReader(confURL.openStream()));
113                     
114             String line = in.readLine();
115             while (line != null)
116             {
117                 line = line.trim();
118                 
119                 if (!line.equals(""))
120                 {
121                     //if the line contains something then
122                     
123                     //split the data so we get the key and value
124                     String[] data = line.split("\\s*:\\s*",2);
125                     
126                     if (data.length == 2)
127                     {
128                         //if the line is valid add the two parts to the map
129                         params.put(data[0], data[1]);
130                     }
131                     else
132                     {
133                         //if the line isn't valid tell the user but continue on
134                         //with the rest of the file
135                         System.out.println("Config Line is Malformed: " + line);
136                     }
137                 }
138                 
139                 //get the next line ready to process
140                 line = in.readLine();
141             }
142         }
143         finally
144         {
145             //close the config file if it got opened
146             if (in != null) in.close();
147         }
148         
149         //create and return a new instance of the similarity measure specified
150         //by the config file
151         return newInstance(params);
152     }
153     
154     /**
155      * Creates a new instance of a similarity measure using the supplied parameters.
156      * @param params a set of key-value pairs which define the similarity measure.
157      * @return the newly created similarity measure.
158      * @throws Exception if an error occurs  while creating the similarity measure.
159      */
160     public static SimilarityMeasure newInstance(Map<String,String> params) throws Exception
161     {
162         //get the class name of the implementation we need to load
163         String name = params.remove("simType");
164         
165         //if the name hasn't been specified then throw an exception
166         if (name == null) throw new Exception("Must specifiy the similarity measure to use");
167         
168         //Get hold of the class we need to load
169         @SuppressWarnings("unchecked") Class<SimilarityMeasure> c = (Class<SimilarityMeasure>)Class.forName(name);
170         
171         //create a new instance of the similarity measure
172         SimilarityMeasure sim = c.newInstance();
173         
174         //get the cache parameter from the config params
175         String cSize = params.remove("cache");
176         
177         //if a cache size was specified then set it
178         if (cSize != null) sim.cacheSize = Integer.parseInt(cSize);
179         
180         //get the url of the domain mapping file
181         String mapURL = params.remove("mapping");
182         
183         if (mapURL != null)
184         {
185             //if a mapping file has been provided then 
186                         
187             //open a reader over the file
188             BufferedReader in = new BufferedReader(new InputStreamReader((new URL(mapURL)).openStream()));
189             
190             //get the first line ready for processing
191             String line = in.readLine();
192             
193             while (line != null)
194             {
195                 if (!line.startsWith("#"))
196                 {
197                     //if the line isn't a comment (i.e. it doesn't start with #) then...
198                     
199                     //split the line at the white space
200                     String[] data = line.trim().split("\\s+");
201                     
202                     //create a new set to hold the mapped synsets
203                     Set<Synset> mappedTo = new HashSet<Synset>();
204                     
205                     for (int i = 1 ; i < data.length ; ++i)
206                     {
207                         //for each synset mapped to get the actual Synsets
208                         //and store them in the set
209                         mappedTo.addAll(sim.getSynsets(data[i]));
210                     }
211                     
212                     //if we have found some actual synsets then
213                     //store them in the domain mappings
214                     if (mappedTo.size() > 0) sim.domainMappings.put(data[0], mappedTo);
215                 }
216                 
217                 //get the next line from the file
218                 line = in.readLine();
219             }
220             
221             //we have finished with the mappings file so close it
222             in.close();
223         }        
224         
225         //make sure it is configured properly
226         sim.config(params);
227         
228         //then return it
229         return sim;
230     }
231     
232     /**
233      * This is the method responsible for computing the similarity between two
234      * specific synsets. The method is implemented differently for each
235      * similarity measure so see the subclasses for detailed information.
236      * @param s1 one of the synsets between which we want to know the similarity.
237      * @param s2 the other synset between which we want to know the similarity.
238      * @return the similarity between the two synsets.
239      * @throws JWNLException if an error occurs accessing WordNet.
240      */
241     public abstract double getSimilarity(Synset s1, Synset s2) throws JWNLException;
242     
243     /**
244      * Get the similarity between two words. The words can be specified either
245      * as just the word or in an encoded form including the POS tag and possibly
246      * the sense number, i.e. cat#n#1 would specifiy the 1st sense of the noun cat.
247      * @param w1 one of the words to compute similarity between.
248      * @param w2 the other word to compute similarity between.
249      * @return a SimilarityInfo instance detailing the similarity between the
250      *         two words specified.
251      * @throws JWNLException if an error occurs accessing WordNet.
252      */
253     public final SimilarityInfo getSimilarity(String w1, String w2) throws JWNLException
254     {
255         //Get the (possibly) multiple synsets associated with each word
256         Set<Synset> ss1 = getSynsets(w1);
257         Set<Synset> ss2 = getSynsets(w2);
258                 
259         //assume the words are not at all similar
260         SimilarityInfo sim = null;
261         
262         for (Synset s1 : ss1)
263         {
264             for (Synset s2 : ss2)
265             {
266                 //for each pair of synsets get the similarity
267                 double score = getSimilarity(s1, s2);
268                                 
269                 if (sim == null || score > sim.getSimilarity())
270                 {
271                     //if the similarity is better than we have seen before
272                     //then create and store an info object describing the
273                     //similarity between the two synsets
274                     sim = new SimilarityInfo(w1, s1, w2, s2, score);
275                 }
276             }
277         }
278         
279         //return the maximum similarity we have found
280         return sim;    
281     }
282     
283     /**
284      * Finds all the synsets associated with a specific word.
285      * @param word the word we are interested. Note that this may be encoded
286      *        to include information on POS tag and sense index.
287      * @return a set of synsets that are associated with the supplied word
288      * @throws JWNLException if an error occurs accessing WordNet
289      */
290     private final Set<Synset> getSynsets(String word) throws JWNLException
291     {        
292         //get a handle on the WordNet dictionary
293         Dictionary dict = Dictionary.getInstance();
294         
295         //create an emptuy set to hold any synsets we find
296         Set<Synset> synsets = new HashSet<Synset>();
297         
298         //split the word on the # characters so we can get at the
299         //upto three componets that could be present: word, POS tag, sense index
300         String[] data = word.split("#");
301         
302         //if the word is in the domainMappings then simply return the mappings
303         if (domainMappings.containsKey(data[0])) return domainMappings.get(data[0]);
304         
305         if (data.length == 1)
306         {
307             //if there is just the word
308                 
309             for (IndexWord iw : dict.lookupAllIndexWords(data[0]).getIndexWordArray())
310             {
311                 //for each matching word in WordNet add all it's senses to
312                 //the set we are building up
313                 synsets.addAll(Arrays.asList(iw.getSenses()));
314             }
315             
316             //we have finihsed so return the synsets we found
317             return synsets;
318         }
319     
320         //the calling method specified a POS tag as well so get that
321         POS pos = POS.getPOSForKey(data[1]);
322         
323         //if the POS tag isn't valid throw an exception
324         if (pos == null) throw new JWNLException("Invalid POS Tag: " + data[1]);
325         
326         //get the word with the specified POS tag from WordNet
327         IndexWord iw = dict.getIndexWord(pos, data[0]);
328         
329         if (data.length > 2)
330         {
331             //if the calling method specified a sense index then
332             //add just that sysnet to the set we are creating
333             synsets.add(iw.getSense(Integer.parseInt(data[2])));
334         }
335         else
336         {
337             //no sense index was specified so add all the senses of
338             //the word to the set we are creating
339             synsets.addAll(Arrays.asList(iw.getSenses()));
340         }
341         
342         //return the set of synsets we found for the specified word
343         return synsets;
344     }
345 }

 

     每个函数都有详细注解,大家应该都看的明白。

    262~277的循环过程如下:

    基于WordNet的英文同义词、近义词相似度评估及代码实现_第19张图片

       JCN.java    

  1 /************************************************************************
  2  *         Copyright (C) 2006-2007 The University of Sheffield          *
  3  *      Developed by Mark A. Greenwood <[email protected]>     *
  4  *                                                                      *
  5  * This program is free software; you can redistribute it and/or modify *
  6  * it under the terms of the GNU General Public License as published by *
  7  * the Free Software Foundation; either version 2 of the License, or    *
  8  * (at your option) any later version.                                  *
  9  *                                                                      *
 10  * This program is distributed in the hope that it will be useful,      *
 11  * but WITHOUT ANY WARRANTY; without even the implied warranty of       *
 12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        *
 13  * GNU General Public License for more details.                         *
 14  *                                                                      *
 15  * You should have received a copy of the GNU General Public License    *
 16  * along with this program; if not, write to the Free Software          *
 17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.            *
 18  ************************************************************************/
 19 
 20 package shef.nlp.wordnet.similarity;
 21 
 22 import net.didion.jwnl.JWNLException;
 23 import net.didion.jwnl.data.Synset;
 24 
 25 /**
 26  * An implementation of the WordNet similarity measure developed by Jiang and
 27  * Conrath. For full details of the measure see:
 28  * <blockquote>Jiang J. and Conrath D. 1997. Semantic similarity based on corpus
 29  * statistics and lexical taxonomy. In Proceedings of International
 30  * Conference on Research in Computational Linguistics, Taiwan.</blockquote>
 31  * @author Mark A. Greenwood
 32  */
 33 public class JCn extends ICMeasure
 34 {
 35     /**
 36      * Instances of this similarity measure should be generated using the
 37      * factory methods of {@link SimilarityMeasure}.
 38      */
 39     protected JCn()
 40     {
 41         //A protected constructor to force the use of the newInstance method
 42     }
 43     
 44     @Override public double getSimilarity(Synset s1, Synset s2) throws JWNLException
 45     {
 46         //if the POS tags are not the same then return 0 as this measure
 47         //only works with 2 nouns or 2 verbs.
 48         if (!s1.getPOS().equals(s2.getPOS())) return 0;
 49         
 50         //see if the similarity is already cached and...
 51         Double cached = getFromCache(s1, s2);
 52         
 53         //if it is then simply return it
 54         if (cached != null) return cached.doubleValue();
 55         
 56         //Get the Information Content (IC) values for the two supplied synsets
 57         double ic1 = getIC(s1);
 58         double ic2 = getIC(s2);
 59 
 60         //if either IC value is zero then cache and return a sim of 0
 61         if (ic1 == 0 || ic2 == 0) return addToCache(s1,s2,0);
 62         
 63         //Get the Lowest Common Subsumer (LCS) of the two synsets
 64         Synset lcs = getLCSbyIC(s1,s2);
 65         
 66         //if there isn't an LCS then cache and return a sim of 0
 67         if (lcs == null) return addToCache(s1,s2,0);
 68         
 69         //get the IC valueof the LCS
 70         double icLCS = getIC(lcs);
 71         
 72         //compute the distance between the two synsets
 73         //NOTE: This is the original JCN measure
 74         double distance = ic1 + ic2 - (2 * icLCS);
 75         
 76         //assume the similarity between the synsets is 0
 77         double sim = 0;
 78         
 79         if (distance == 0)
 80         {
 81             //if the distance is 0 (i.e. ic1 + ic2 = 2 * icLCS) then...
 82             
 83             //get the root frequency for this POS tag
 84             double rootFreq = getFrequency(s1.getPOS());
 85             
 86             if (rootFreq > 0.01)
 87             {
 88                 //if the root frequency has a value then use it to generate a
 89                 //very large sim value
 90                 sim = 1/-Math.log((rootFreq - 0.01) / rootFreq);
 91             }            
 92         }
 93         else
 94         {
 95             //this is the normal case so just convert the distance
 96             //to a similarity by taking the multiplicative inverse
 97             sim = 1/distance;
 98         }
 99         
100         //cache and return the calculated similarity
101         return addToCache(s1,s2,sim);
102     }
103 }

      LIN.java      

 1 package shef.nlp.wordnet.similarity;
 2 
 3 import net.didion.jwnl.JWNLException;
 4 import net.didion.jwnl.data.Synset;
 5 
 6 /**
 7  * An implementation of the WordNet similarity measure developed by Lin. For
 8  * full details of the measure see:
 9  * <blockquote>Lin D. 1998. An information-theoretic definition of similarity. In
10  * Proceedings of the 15th International Conference on Machine
11  * Learning, Madison, WI.</blockquote>
12  * @author Mark A. Greenwood
13  */
14 public class Lin extends ICMeasure
15 {
16     /**
17      * Instances of this similarity measure should be generated using the
18      * factory methods of {@link SimilarityMeasure}.
19      */
20     protected Lin()
21     {
22         //A protected constructor to force the use of the newInstance method
23     }
24     
25     @Override public double getSimilarity(Synset s1, Synset s2) throws JWNLException
26     {
27         //if the POS tags are not the same then return 0 as this measure
28         //only works with 2 nouns or 2 verbs.
29         if (!s1.getPOS().equals(s2.getPOS())) return 0;
30         
31         //see if the similarity is already cached and...
32         Double cached = getFromCache(s1, s2);
33         
34         //if it is then simply return it
35         if (cached != null) return cached.doubleValue();
36         
37         //Get the Information Content (IC) values for the two supplied synsets
38         double ic1 = getIC(s1);
39         double ic2 = getIC(s2);
40         
41         //if either IC value is zero then cache and return a sim of 0
42         if (ic1 == 0 || ic2 == 0) return addToCache(s1,s2,0);
43         
44         //Get the Lowest Common Subsumer (LCS) of the two synsets
45         Synset lcs = getLCSbyIC(s1,s2);
46         
47         //if there isn't an LCS then cache and return a sim of 0
48         if (lcs == null) return addToCache(s1,s2,0);
49         
50         //get the IC valueof the LCS
51         double icLCS = getIC(lcs);
52         
53         //caluclaue the similarity score
54         double sim = (2*icLCS)/(ic1+ic2);
55         
56         //cache and return the calculated similarity
57         return addToCache(s1,s2,sim);
58     }
59 }

 

 

参考文献:

《基于维基百科的语义相似度计算》盛志超,陶晓鹏(复旦大学计算机科学技术学院);

《基于WordNet的英语词语相似度计算》颜伟,荀恩东(北京语言大学 语言信息处理研究所)

WordNet中的名词:http://ccl.pku.edu.cn/doubtfire/semantics/wordnet/c-wordnet/nouns-in-wordnet.htm

MIT的JWI(Java WordNet Interface)和JWNL(Java WordNet Library)比较  

  http://jxr19830617.blog.163.com/blog/static/163573067201301985219857/

  http://jxr19830617.blog.163.com/blog/static/1635730672013019105255295/

 

你可能感兴趣的:(word)