iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。
示例数据
1
2
3
4
5
6
import pandas as pd
inp= [{'c1':10,'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':123}]
df= pd.DataFrame(inp)
print(df)
import pandas as pd inp = [{'c1':10, 'c2':100}, {'c1':11, 'c2':110}, {'c1':12, 'c2':123}] df = pd.DataFrame(inp) print(df)
按行遍历iterrows():
1
2
for index, rowin df.iterrows():
print(index)# 输出每行的索引值
for index, row in df.iterrows(): print(index) # 输出每行的索引值
row[‘name']
1
2
3
# 对于每一行,通过列名name访问对应的元素
for rowin df.iterrows():
print(row['c1'], row['c2'])# 输出每一行
# 对于每一行,通过列名name访问对应的元素 for row in df.iterrows(): print(row['c1'], row['c2']) # 输出每一行
按行遍历itertuples():
getattr(row, ‘name')
1
2
for rowin df.itertuples():
print(getattr(row,'c1'),getattr(row,'c2'))# 输出每一行
for row in df.itertuples(): print(getattr(row, 'c1'), getattr(row, 'c2')) # 输出每一行
按列遍历iteritems():
1
2
for index, rowin df.iteritems():
print(index)# 输出列名
for index, row in df.iteritems(): print(index) # 输出列名
1
2
for rowin df.iteritems():
print(row[0], row[1], row[2])# 输出各列
for row in df.iteritems(): print(row[0], row[1], row[2]) # 输出各列
原文链接:https://blog.csdn.net/qq_39349673/article/details/107529206