MNIST手写数字识别

"""
Copyright 2022 The TBAALi Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

"""
 @Author: TBAALi
 @Email: [email protected]
 @FileName: ReRecognizeHandwrittenDigits.py
 @DateTime: 5/16/22 8:48 PM
 @SoftWare: PyCharm
 @Copyright: Copyright (C) 2022 TBAALi
"""

# 识别手写数字
import numpy as np
import torch

# 导入 PyTorch 内置 mnist 数据
from torchvision.datasets import mnist

# 导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

# 导入 nn 及优化器
import torch.nn.functional as F
from torch import nn, optim

import matplotlib.pyplot as plt

import pylab

# 定义一些超参数
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
num_epoches = 20
lr = 0.01
momentum = 0.5

# 下载数据并对数据进行预处理
# 定义预处理函数,这些预处理依次放在 Compose 函数中
# Compose 将一些转换函数组合在一起
# Normalize 对张量进行归一化
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])

# 下载数据并对数据进行预处理
train_dataset = mnist.MNIST('./data', train = True, transform = transform, download = True)
test_dataset = mnist.MNIST('./data', train = False, transform = transform)

# dataloader 是一个可迭代对象,可以使用迭代器一样使用
train_loader = DataLoader(train_dataset, batch_size = train_batch_size, shuffle = True)
test_loader = DataLoader(test_dataset, batch_size = test_batch_size, shuffle = False)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

fig = plt.figure()
for i in range(6) :
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap = 'gray', interpolation = 'none')
    plt.title('Group Truth : {}'.format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
pylab.show()

# Create 网络
class Net(nn.Module) :
    """
    使用 sequential 构建网络, Sequential() 函数的作用是讲网络的层组合到一起
    """
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(Net, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Linear(in_dim, n_hidden_1),
            nn.BatchNorm1d(n_hidden_1)
        )
        self.layer2 = nn.Sequential(
            nn.Linear(n_hidden_1, n_hidden_2),
            nn.BatchNorm1d(n_hidden_2)
        )
        self.layer3 = nn.Sequential(
            nn.Linear(n_hidden_2, out_dim)
        )

    def forward(self, x):
        x = F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
        x = self.layer3(x)
        return x

# Instance Net
# 检测是否尤可用的 GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 实例化网络
model = Net(28 * 28, 300, 100, 10)
model.to(device)

# 定义损失函数和优化器
# PyTorch 提供自动反向传播的功能,直接让损失函数掉 backward 方法即可
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr = lr, momentum = momentum)


# 训练模型
# 开始训练
losses = []
acces = []
eval_losses = []
eval_access = []

for epoch in range(num_epoches):
    train_loss = 0
    train_acc = 0
    # model.train() 会把所有的 module 设置为训练模式
    model.train()
    # 动态修改参数学习率
    if epoch % 5 == 0:
        # 动态修改学习率参数
        optimizer.param_groups[0]['lr'] *= 0.1
    for img, label in train_loader:
        img = img.to(device)
        label = label.to(device)
        img = img.view(img.size(0), -1)
        # 前向传播
        out = model(img)
        loss = criterion(out, label)
        # 反向传播
        optimizer.zero_grad()  # 梯度清零
        loss.backward()        # 自动生成梯度
        optimizer.step()       # 执行优化器进行优化
        # 记录误差
        train_loss += loss.item()
        # 计算分类的准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        train_acc += acc

    losses.append(train_loss / len(train_loader))
    acces.append(train_acc / len(train_loader))
    # 在测试及上验证效果
    eval_loss = 0
    eval_acc = 0
    # 将模型改为预测模型
    model.eval()
    for img, label in test_loader:
        img = img.to(device)
        label = label.to(device)
        img = img.view(img.size(0), -1)
        out = model(img)
        loss = criterion(out, label)
        # 记录误差
        eval_loss += loss.item()
        # 记录准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        eval_acc += acc

    eval_losses.append(eval_loss / len(test_loader))
    eval_access.append(eval_acc / len(test_loader))
    print('epoch: {}, Train Loss: {:.4f}, Train ACC: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'
          .format(epoch, train_loss / len(train_loader),
                  train_acc / len(train_loader),
                  eval_loss / len(test_loader),
                  eval_acc / len(test_loader)))

# 可视化训练结果
plt.title('Train Loss')
plt.plot(np.arange(len(losses)), losses, color = 'orange', linewidth = 1.0, linestyle = '--')
plt.plot(np.arange(len(acces)), acces, color = 'green', linewidth = 1.0, linestyle = '-')
plt.legend(['Train Loss', 'Train Acc'], loc = 'upper right')
plt.show()

def print_hi(name):
    print(f'Hi, {name}')


if __name__ == '__main__':
    print_hi('Python')

MNIST手写数字识别_第1张图片

你可能感兴趣的:(DL,&,ML,pytorch,深度学习,python)