NNDL 作业10:第六章课后题(LSTM | GRU)

目录

习题6-3  当使用公式(6.50)作为循环神经网络得状态更新公式时,分析其可能存在梯度爆炸的原因并给出解决办法.

习题6-4  推导LSTM网络中参数的梯度,并分析其避免梯度消失的效果

习题6-5 推导GRU网络中参数的梯度,并分析其避免梯度消失的效果

附加题 6-1P 什么时候应该用GRU? 什么时候用LSTM?

附加题 6-2P LSTM BP推导,并用Numpy实现

总结

参考


习题6-3  当使用公式(6.50)作为循环神经网络得状态更新公式时,分析其可能存在梯度爆炸的原因并给出解决办法.


 公式6.50:h_{t}=h_{t-1}+g(x_{t},h_{t-1};\Theta )
z_{k}=Uh_{k-1}+Wx_{k}+b为在第k时刻函数g(·)的输入,在计算公式6.34中的误差项  \delta _{t,k}=\frac{\partial L_{t}}{\partial z_{k}}时,梯度可能过大,从而导致梯度过大问题。
解决方法:使用长短期记忆神经网络。


习题6-4  推导LSTM网络中参数的梯度,并分析其避免梯度消失的效果

LSTM结构图:

NNDL 作业10:第六章课后题(LSTM | GRU)_第1张图片

  • 遗忘门f_{t}:控制上一个隐藏状态要遗忘多少信息
  • 输入门i_{t}:当前状态的候选状态有多少信息需要保存
  • 输出门o_{t}:当前隐藏状态有多少需要输出给外部状态

NNDL 作业10:第六章课后题(LSTM | GRU)_第2张图片

LSTM 中梯度的传播有很多条路径,但C_{t}=C_{t-1}f_{t}+a_{t}i_{t}这条路径上只有逐元素相乘和相加的操作,梯度流最稳定;但是其他路径上梯度流与普通 RNN 类似,照样会发生相同的权重矩阵反复连乘。

由于总的远距离梯度 = 各条路径的远距离梯度之和,即便其他远距离路径梯度消失了,只要保证有一条远距离路径(就是上面说的那条高速公路)梯度不消失,总的远距离梯度就不会消失(正常梯度 + 消失梯度 = 正常梯度)。因此 LSTM 通过改善一条路径上的梯度问题拯救了总体的远距离梯度。

习题6-5 推导GRU网络中参数的梯度,并分析其避免梯度消失的效果

GRU结构图:

NNDL 作业10:第六章课后题(LSTM | GRU)_第3张图片

NNDL 作业10:第六章课后题(LSTM | GRU)_第4张图片

NNDL 作业10:第六章课后题(LSTM | GRU)_第5张图片

 NNDL 作业10:第六章课后题(LSTM | GRU)_第6张图片

GRU的参数较少(U和W都较小),因此其训练速度更快,或需要归纳的数据更少。相对应的,如果有足够的训练数据,表达能力更强的LSTM或许效果更佳。GRU具有调节信息流动的门单元,但没有一个单独的记忆单元,GRU将输入门和遗忘门整合成一个升级门,通过门来控制梯度。

附加题 6-1P 什么时候应该用GRU? 什么时候用LSTM?

  •  一般来说两者效果差不多,性能在很多任务上也不分伯仲。GRU参数更少,收敛更快;数据量很大时,LSTM效果会更好一些,因为LSTM参数也比GRU参数多一些。
  • 产生新的state的方式不同,LSTM有两个不同的gate,分别是forget gate (f gate)和input gate(i gate),而GRUs只有一种update gate(z gate);
  • GRU要在上一时刻的隐层信息的基础上乘上一个重置门,而LSTM无需门来对其控制,LSTM必须考虑上一时刻的隐层信息对当前隐层的影响,而GRU则可选择是否考虑上一时刻的隐层信息对当前时刻的影响。

附加题 6-2P LSTM BP推导,并用Numpy实现

首先求出它们在t时刻的梯度,然后再求出他们最终的梯度。

NNDL 作业10:第六章课后题(LSTM | GRU)_第7张图片

 Numpy实现:

# coding=gbk
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import numpy as np
import torch


def sigmoid(x):
    return 1 / (1 + np.exp(-x))


class LSTMCell:
    def __init__(self, weight_ih, weight_hh, bias_ih, bias_hh):
        self.weight_ih = weight_ih
        self.weight_hh = weight_hh
        self.bias_ih = bias_ih
        self.bias_hh = bias_hh

        self.dc_prev = None
        self.dh_prev = None

        self.weight_ih_grad_stack = []
        self.weight_hh_grad_stack = []
        self.bias_ih_grad_stack = []
        self.bias_hh_grad_stack = []

        self.x_stack = []
        self.dx_list = []
        self.dh_prev_stack = []

        self.h_prev_stack = []
        self.c_prev_stack = []

        self.h_next_stack = []
        self.c_next_stack = []

        self.input_gate_stack = []
        self.forget_gate_stack = []
        self.output_gate_stack = []
        self.cell_memory_stack = []

    def __call__(self, x, h_prev, c_prev):
        a_vector = np.dot(x, self.weight_ih.T) + np.dot(h_prev, self.weight_hh.T)
        a_vector += self.bias_ih + self.bias_hh

        h_size = np.shape(h_prev)[1]
        a_i = a_vector[:, h_size * 0:h_size * 1]
        a_f = a_vector[:, h_size * 1:h_size * 2]
        a_c = a_vector[:, h_size * 2:h_size * 3]
        a_o = a_vector[:, h_size * 3:]

        input_gate = sigmoid(a_i)
        forget_gate = sigmoid(a_f)
        cell_memory = np.tanh(a_c)
        output_gate = sigmoid(a_o)

        c_next = (forget_gate * c_prev) + (input_gate * cell_memory)
        h_next = output_gate * np.tanh(c_next)

        self.x_stack.append(x)

        self.h_prev_stack.append(h_prev)
        self.c_prev_stack.append(c_prev)

        self.c_next_stack.append(c_next)
        self.h_next_stack.append(h_next)

        self.input_gate_stack.append(input_gate)
        self.forget_gate_stack.append(forget_gate)
        self.output_gate_stack.append(output_gate)
        self.cell_memory_stack.append(cell_memory)

        self.dc_prev = np.zeros_like(c_next)
        self.dh_prev = np.zeros_like(h_next)

        return h_next, c_next

    def backward(self, dh_next):
        x_stack = self.x_stack.pop()

        h_prev = self.h_prev_stack.pop()
        c_prev = self.c_prev_stack.pop()

        c_next = self.c_next_stack.pop()

        input_gate = self.input_gate_stack.pop()
        forget_gate = self.forget_gate_stack.pop()
        output_gate = self.output_gate_stack.pop()
        cell_memory = self.cell_memory_stack.pop()

        dh = dh_next + self.dh_prev

        d_tanh_c = dh * output_gate * (1 - np.square(np.tanh(c_next)))
        dc = d_tanh_c + self.dc_prev

        dc_prev = dc * forget_gate
        self.dc_prev = dc_prev

        d_input_gate = dc * cell_memory
        d_forget_gate = dc * c_prev
        d_cell_memory = dc * input_gate

        d_output_gate = dh * np.tanh(c_next)

        d_ai = d_input_gate * input_gate * (1 - input_gate)
        d_af = d_forget_gate * forget_gate * (1 - forget_gate)
        d_ao = d_output_gate * output_gate * (1 - output_gate)
        d_ac = d_cell_memory * (1 - np.square(cell_memory))

        da = np.concatenate((d_ai, d_af, d_ac, d_ao), axis=1)

        dx = np.dot(da, self.weight_ih)
        dh_prev = np.dot(da, self.weight_hh)
        self.dh_prev = dh_prev

        self.dx_list.insert(0, dx)
        self.dh_prev_stack.append(dh_prev)

        self.weight_ih_grad_stack.append(np.dot(da.T, x_stack))
        self.weight_hh_grad_stack.append(np.dot(da.T, h_prev))

        db = np.sum(da, axis=0)
        self.bias_ih_grad_stack.append(db)
        self.bias_hh_grad_stack.append(db)

        return dh_prev


np.random.seed(123)
torch.random.manual_seed(123)
np.set_printoptions(precision=6, suppress=True)

lstm_torch = torch.nn.LSTMCell(2, 3).double()
lstm_numpy = LSTMCell(lstm_torch.weight_ih.data.numpy(),
                      lstm_torch.weight_hh.data.numpy(),
                      lstm_torch.bias_ih.data.numpy(),
                      lstm_torch.bias_hh.data.numpy())

x_numpy = np.random.random((4, 2))
x_torch = torch.tensor(x_numpy, requires_grad=True)

h_numpy = np.random.random((4, 3))
h_torch = torch.tensor(h_numpy, requires_grad=True)

c_numpy = np.random.random((4, 3))
c_torch = torch.tensor(c_numpy, requires_grad=True)

dh_numpy = np.random.random((4, 3))
dh_torch = torch.tensor(dh_numpy, requires_grad=True)

h_numpy, c_numpy = lstm_numpy(x_numpy, h_numpy, c_numpy)
h_torch, c_torch = lstm_torch(x_torch, (h_torch, c_torch))
h_torch.backward(dh_torch)

dh_numpy = lstm_numpy.backward(dh_numpy)

print("h_numpy :\n", h_numpy)
print("h_torch :\n", h_torch.data.numpy())

print("---------------------------------")
print("c_numpy :\n", c_numpy)
print("c_torch :\n", c_torch.data.numpy())

print("---------------------------------")
print("dx_numpy :\n", np.sum(lstm_numpy.dx_list, axis=0))
print("dx_torch :\n", x_torch.grad.data.numpy())

print("---------------------------------")
print("w_ih_grad_numpy :\n",
      np.sum(lstm_numpy.weight_ih_grad_stack, axis=0))
print("w_ih_grad_torch :\n",
      lstm_torch.weight_ih.grad.data.numpy())

print("---------------------------------")
print("w_hh_grad_numpy :\n",
      np.sum(lstm_numpy.weight_hh_grad_stack, axis=0))
print("w_hh_grad_torch :\n",
      lstm_torch.weight_hh.grad.data.numpy())

print("---------------------------------")
print("b_ih_grad_numpy :\n",
      np.sum(lstm_numpy.bias_ih_grad_stack, axis=0))
print("b_ih_grad_torch :\n",
      lstm_torch.bias_ih.grad.data.numpy())

print("---------------------------------")
print("b_hh_grad_numpy :\n",
      np.sum(lstm_numpy.bias_hh_grad_stack, axis=0))
print("b_hh_grad_torch :\n",
      lstm_torch.bias_hh.grad.data.numpy())

 运行结果:

h_numpy :
 [[ 0.055856  0.234159  0.138457]
 [ 0.094461  0.245843  0.224411]
 [ 0.020396  0.086745  0.082545]
 [-0.003794  0.040677  0.063094]]
h_torch :
 [[ 0.055856  0.234159  0.138457]
 [ 0.094461  0.245843  0.224411]
 [ 0.020396  0.086745  0.082545]
 [-0.003794  0.040677  0.063094]]
---------------------------------
c_numpy :
 [[ 0.092093  0.384992  0.213364]
 [ 0.151362  0.424671  0.318313]
 [ 0.033245  0.141979  0.120822]
 [-0.0061    0.062946  0.094999]]
c_torch :
 [[ 0.092093  0.384992  0.213364]
 [ 0.151362  0.424671  0.318313]
 [ 0.033245  0.141979  0.120822]
 [-0.0061    0.062946  0.094999]]
---------------------------------
dx_numpy :
 [[-0.144016  0.029775]
 [-0.229789  0.140921]
 [-0.246041 -0.009354]
 [-0.088844  0.036652]]
dx_torch :
 [[-0.144016  0.029775]
 [-0.229789  0.140921]
 [-0.246041 -0.009354]
 [-0.088844  0.036652]]
---------------------------------
w_ih_grad_numpy :
 [[-0.056788 -0.036448]
 [ 0.018742  0.014428]
 [ 0.007827  0.024828]
 [ 0.07856   0.05437 ]
 [ 0.061267  0.045952]
 [ 0.083886  0.0655  ]
 [ 0.229755  0.156008]
 [ 0.345218  0.251984]
 [ 0.430385  0.376664]
 [ 0.014239  0.011767]
 [ 0.054866  0.044531]
 [ 0.04654   0.048565]]
w_ih_grad_torch :
 [[-0.056788 -0.036448]
 [ 0.018742  0.014428]
 [ 0.007827  0.024828]
 [ 0.07856   0.05437 ]
 [ 0.061267  0.045952]
 [ 0.083886  0.0655  ]
 [ 0.229755  0.156008]
 [ 0.345218  0.251984]
 [ 0.430385  0.376664]
 [ 0.014239  0.011767]
 [ 0.054866  0.044531]
 [ 0.04654   0.048565]]
---------------------------------
w_hh_grad_numpy :
 [[-0.037698 -0.048568 -0.021069]
 [ 0.016749  0.016277  0.007556]
 [ 0.035743  0.02156   0.000111]
 [ 0.060824  0.069505  0.029101]
 [ 0.060402  0.051634  0.025643]
 [ 0.068116  0.06966   0.035544]
 [ 0.168965  0.217076  0.075904]
 [ 0.248277  0.290927  0.138279]
 [ 0.384974  0.401949  0.167006]
 [ 0.015448  0.0139    0.005158]
 [ 0.057147  0.048975  0.022261]
 [ 0.057297  0.048308  0.017745]]
w_hh_grad_torch :
 [[-0.037698 -0.048568 -0.021069]
 [ 0.016749  0.016277  0.007556]
 [ 0.035743  0.02156   0.000111]
 [ 0.060824  0.069505  0.029101]
 [ 0.060402  0.051634  0.025643]
 [ 0.068116  0.06966   0.035544]
 [ 0.168965  0.217076  0.075904]
 [ 0.248277  0.290927  0.138279]
 [ 0.384974  0.401949  0.167006]
 [ 0.015448  0.0139    0.005158]
 [ 0.057147  0.048975  0.022261]
 [ 0.057297  0.048308  0.017745]]
---------------------------------
b_ih_grad_numpy :
 [-0.084682  0.032588  0.046412  0.126449  0.111421  0.139337  0.361956
  0.539519  0.761838  0.027649  0.103695  0.099405]
b_ih_grad_torch :
 [-0.084682  0.032588  0.046412  0.126449  0.111421  0.139337  0.361956
  0.539519  0.761838  0.027649  0.103695  0.099405]
---------------------------------
b_hh_grad_numpy :
 [-0.084682  0.032588  0.046412  0.126449  0.111421  0.139337  0.361956
  0.539519  0.761838  0.027649  0.103695  0.099405]
b_hh_grad_torch :
 [-0.084682  0.032588  0.046412  0.126449  0.111421  0.139337  0.361956
  0.539519  0.761838  0.027649  0.103695  0.099405]

Process finished with exit code 0

总结

这次作业的推导有点难,参考了网上的推导过程,收获了很多,对于LSTM网络和GRU网络有了更多的了解,还要继续努力啊!

参考

《神经网络的梯度推导与代码验证》之LSTM的前向传播和反向梯度推导 - SumwaiLiu - 博客园

GRU(Gated Recurrent Unit) 更新过程推导及简单代码实现 - 一只有恒心的小菜鸟 - 博客园

零基础入门深度学习(6) - 长短时记忆网络(LSTM) - 作业部落 Cmd Markdown 编辑阅读器

你可能感兴趣的:(python,numpy)