机器学习——Sklearn学习笔记——总章

Sklearn学习笔记 : 总章

  • 写在前面
  • 0. 快速入门(Getting Started)
    • 0.1 拟合和预测:评估器的基础(输出)
    • 0.2 转换器和预处理器(输入)
    • 0.3 管道:链接了预处理器和评估器
    • 0.4 模型评估
    • 0.5 自动参数搜索
  • 1. 预处理
  • 2. 模型选择
  • 3. 算法
    • 3.1 分类
    • 3.2 回归
    • 3.3 聚类
    • 3.4 降维
  • API
  • 写在最后

写在前面

Sklearn 官方文档内容相当地详实,反而显得对初学者学习不太友好。
本 “学习笔记” 系列就是参照Sklearn官方文档整理而得,结构上基本维持不变,内容少会有少许删减(过于详细和”偏“),以便自己以后查阅和复习。

机器学习——Sklearn学习笔记——总章_第1张图片

0. 快速入门(Getting Started)

Scikit-learn,是一个开源的机器学习库,支持监督和无监督学习。它还提供了模型拟合各种工具,数据预处理,模型选择和评估,以及许多其他工具。

0.1 拟合和预测:评估器的基础(输出)

(Fitting and predicting: estimator basics)

  • Scikit-learn 内提供的大量内置机器学习算法和模型叫做estimator(评估器)
  • 每个评估器都可以用它的 fit() 方法去拟合数据。
  • fit(X) → y ,fit()函数接收两个输入
  • X的格式:(n_samples, n_features) ,即样本行排,特征列排。
  • y 的值是实数(回归任务)或者整数(分类任务);
  • X 和 y 都应该是numpy数组或者 array-like 数据类型。

拟合:

>>> from sklearn.ensemble import RandomForestClassifier
>>> clf = RandomForestClassifier(random_state=0)
>>> X = [[ 1,  2,  3],  # 2 samples, 3 features
...      [11, 12, 13]]
>>> y = [0, 1]  # classes of each sample
>>> clf.fit(X, y)
RandomForestClassifier(random_state=0)

预测:

>>> clf.predict(X)  # predict classes of the training data
array([0, 1])
>>> clf.predict([[4, 5, 6], [14, 15, 16]])  # predict classes of new data
array([0, 1])

0.2 转换器和预处理器(输入)

(Transformers and pre-processors)

一般的管道( pipeline ) 包括了两个部分:
① 作为输入端的预处理器( pre-processor)
转换(Transform)或者”推断?“( imputes )数据
② 作为输出端的预测器( predictor ):预测目标值的预测器( predictor )

>>> from sklearn.preprocessing import StandardScaler
>>> X = [[0, 15],
...      [1, -10]]
>>> StandardScaler().fit(X).transform(X)
array([[-1.,  1.],
       [ 1., -1.]])

0.3 管道:链接了预处理器和评估器

转换器 和 评估器/预测器 整合到一起就成了一个统一的整体(对象): Pipeline,即:

Transformers + estimators (predictors) = Pipeline

注:在 Sklearn-learn 中 评估器和预测器应该可以直接等价( estimators (predictors))

例子:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import accuracy_score
...
>>> # create a pipeline object
>>> pipe = make_pipeline(
...     StandardScaler(),
...     LogisticRegression(random_state=0)
... )
...
>>> # load the iris dataset and split it into train and test sets
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
...
>>> # fit the whole pipeline
>>> pipe.fit(X_train, y_train)
Pipeline(steps=[('standardscaler', StandardScaler()),
                ('logisticregression', LogisticRegression(random_state=0))])
>>> # we can now use it like any other estimator
>>> accuracy_score(pipe.predict(X_test), y_test)
0.97...

0.4 模型评估

(Model evaluation)

模型训练完成之后应该立马进行模型评估,而不是直接去预测未见过的”新数据“。
我们上面使用的是 train_test_split()方法将数据集划分训练集和测试集,但是在 scikit-learn 中还有喝多其它的工具用于模型验证,特别是交叉验证( cross-validation )。

以5-fold 交叉验证为例:

>>> from sklearn.datasets import make_regression
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.model_selection import cross_validate
...
>>> X, y = make_regression(n_samples=1000, random_state=0)
>>> lr = LinearRegression()
...
>>> result = cross_validate(lr, X, y)  # defaults to 5-fold CV
>>> result['test_score']  # r_squared score is high because dataset is easy
array([1., 1., 1., 1., 1.])

0.5 自动参数搜索

所有的评估器都有参数(或者说超参数),它们可以被调试。一般情况下,我们并不知道该怎么选参数值,因为它们由我们手里的数据所决定

Sklearn 中提供了一些可以自动寻找最优参数组合的工具(通过交叉验证)。下面以 RandomizedSearchCV 对象为例,当搜索结束之后 RandomizedSearchCV 就变成了类似 RandomForestRegressor 的角色:已经由最优的参数组合训练过。

>>> from sklearn.datasets import fetch_california_housing
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.model_selection import RandomizedSearchCV
>>> from sklearn.model_selection import train_test_split
>>> from scipy.stats import randint
...
>>> X, y = fetch_california_housing(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
...
>>> # define the parameter space that will be searched over
>>> param_distributions = {'n_estimators': randint(1, 5),
...                        'max_depth': randint(5, 10)}
...
>>> # now create a searchCV object and fit it to the data
>>> search = RandomizedSearchCV(estimator=RandomForestRegressor(random_state=0),
...                             n_iter=5,
...                             param_distributions=param_distributions,
...                             random_state=0)
>>> search.fit(X_train, y_train)
RandomizedSearchCV(estimator=RandomForestRegressor(random_state=0), n_iter=5,
                   param_distributions={'max_depth': ...,
                                        'n_estimators': ...},
                   random_state=0)
>>> search.best_params_
{'max_depth': 9, 'n_estimators': 4}

>>> # the search object now acts like a normal random forest estimator
>>> # with max_depth=9 and n_estimators=4
>>> search.score(X_test, y_test)
0.73...

注意:要通过一个pipeline来搜索而不是一个单独的评估器。

Note:
In practice, you almost always want to search over a pipeline, instead of a single estimator. One of the main reasons is that if you apply a pre-processing step to the whole dataset without using a pipeline, and then perform any kind of cross-validation, you would be breaking the fundamental assumption of independence between training and testing data. Indeed, since you pre-processed the data using the whole dataset, some information about the test sets are available to the train sets. This will lead to over-estimating the generalization power of the estimator (you can read more in this kaggle post).
Using a pipeline for cross-validation and searching will largely keep you from this common pitfall.

1. 预处理

Sklearn学习笔记(1)——数据预处理

2. 模型选择

Sklearn学习笔记(2)模型选择和评估

3. 算法

3.1 分类

3.2 回归

3.3 聚类

3.4 降维

API

API Reference

使用sklearn进行数据挖掘
机器学习——Sklearn学习笔记——总章_第2张图片
待研究~

写在最后

后续还会继续更新 “学习总结” 系列,作为该系列的一个消化和总结。

参考:

  1. Scikit-learn
  2. Scikit-learn 中文
  3. Python机器学习笔记:sklearn库的学习

你可能感兴趣的:(机器学习(ML),机器学习)