[转载] arrayproxy转numpy_Python numpy.ptp() 使用实例

参考链接: Python中的numpy.nanargmin

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

 Example 1

 def compute_group(cls, data, scales, **params):

 n = len(data)

 if n < 3:

 return pd.DataFrame()

 weight = data.get('weight')

 if params['trim']:

 range_y = data['y'].min(), data['y'].max()

 else:

 range_y = scales.y.dimension()

 dens = compute_density(data['y'], weight, range_y, **params)

 dens['y'] = dens['x']

 dens['x'] = np.mean([data['x'].min(), data['x'].max()])

 # Compute width if x has multiple values

 if len(np.unique(data['x'])) > 1:

 dens['width'] = np.ptp(data['x']) * 0.9

 return dens

 Example 2

 def draw_group(data, panel_params, coord, ax, **params):

 data = coord.transform(data, panel_params)

 fill = to_rgba(data['fill'], data['alpha'])

 color = to_rgba(data['color'], data['alpha'])

 ranges = coord.range(panel_params)

 # For perfect circles the width/height of the circle(ellipse)

 # should factor in the dimensions of axes

 bbox = ax.get_window_extent().transformed(

 ax.figure.dpi_scale_trans.inverted())

 ax_width, ax_height = bbox.width, bbox.height

 factor = ((ax_width/ax_height) *

 np.ptp(ranges.y)/np.ptp(ranges.x))

 size = data.loc[0, 'binwidth'] * params['dotsize']

 offsets = data['stackpos'] * params['stackratio']

 if params['binaxis'] == 'x':

 width, height = size, size*factor

 xpos, ypos = data['x'], data['y'] + height*offsets

 elif params['binaxis'] == 'y':

 width, height = size/factor, size

 xpos, ypos = data['x'] + width*offsets, data['y']

 circles = []

 for xy in zip(xpos, ypos):

 patch = mpatches.Ellipse(xy, width=width, height=height)

 circles.append(patch)

 coll = mcoll.PatchCollection(circles,

 edgecolors=color,

 facecolors=fill)

 ax.add_collection(coll)

 Example 3

 def fit(self, X, y=None):

 """Fit it.

 Parameters

 ----------

 X : array, shape (n_epochs, n_times)

 The data for one channel.

 y : None

 Redundant. Necessary to be compatible with sklearn

 API.

 """

 deltas = np.ptp(X, axis=1)

 self.deltas_ = deltas

 keep = deltas <= self.thresh

 # XXX: actually go over all the folds before setting the min

 # in skopt. Otherwise, may confuse skopt.

 if self.thresh < np.min(np.ptp(X, axis=1)):

 assert np.sum(keep) == 0

 keep = deltas <= np.min(np.ptp(X, axis=1))

 self.mean_ = _slicemean(X, keep, axis=0)

 return self

 Example 4

 def _vote_bad_epochs(self, epochs):

 """Each channel votes for an epoch as good or bad.

 Parameters

 ----------

 epochs : instance of mne.Epochs

 The epochs object for which bad epochs must be found.

 """

 n_epochs = len(epochs)

 picks = _handle_picks(info=epochs.info, picks=self.picks)

 drop_log = np.zeros((n_epochs, len(epochs.ch_names)))

 bad_sensor_counts = np.zeros((len(epochs), ))

 ch_names = [epochs.ch_names[p] for p in picks]

 deltas = np.ptp(epochs.get_data()[:, picks], axis=-1).T

 threshes = [self.threshes_[ch_name] for ch_name in ch_names]

 for ch_idx, (delta, thresh) in enumerate(zip(deltas, threshes)):

 bad_epochs_idx = np.where(delta > thresh)[0]

 # TODO: combine for different ch types

 bad_sensor_counts[bad_epochs_idx] += 1

 drop_log[bad_epochs_idx, picks[ch_idx]] = 1

 return drop_log, bad_sensor_counts

 Example 5

 def extend_limits(values, fraction=0.10, tolerance=1e-2):

 """ Extend the values of a list by a fractional amount """

 values = np.array(values)

 finite_indices = np.isfinite(values)

 if np.sum(finite_indices) == 0:

 raise ValueError("no finite values provided")

 lower_limit, upper_limit = np.min(values[finite_indices]), np.max(values[finite_indices])

 ptp_value = np.ptp([lower_limit, upper_limit])

 new_limits = lower_limit - fraction * ptp_value, ptp_value * fraction + upper_limit

 if np.abs(new_limits[0] - new_limits[1]) < tolerance:

 if np.abs(new_limits[0]) < tolerance:

 # Arbitrary limits, since we"ve just been passed zeros

 offset = 1

 else:

 offset = np.abs(new_limits[0]) * fraction

 new_limits = new_limits[0] - offset, offset + new_limits[0]

 return np.array(new_limits)

 Example 6

 def calculate_fractional_overlap(interest_range, comparison_range):

 """

 Calculate how much of the range of interest overlaps with the comparison

 range.

 """

 if not (interest_range[-1] >= comparison_range[0] \

 and comparison_range[-1] >= interest_range[0]):

 return 0.0 # No overlap

 elif (interest_range[0] >= comparison_range[0] \

 and interest_range[-1] <= comparison_range[-1]):

 return 1.0 # Total overlap

 else:

 # Some overlap. Which side?

 if interest_range[0] < comparison_range[0]:

 # Left hand side

 width = interest_range[-1] - comparison_range[0]

 else:

 # Right hand side

 width = comparison_range[-1] - interest_range[0]

 return width/np.ptp(interest_range) # Fractional overlap

 Example 7

 def update_roi_xy_size(self):

 """ Update the cursor size showing the optimizer scan area for the XY image.

 """

 hpos = self.roi_xy.pos()[0]

 vpos = self.roi_xy.pos()[1]

 hsize = self.roi_xy.size()[0]

 vsize = self.roi_xy.size()[1]

 hcenter = hpos + 0.5 * hsize

 vcenter = vpos + 0.5 * vsize

 if self.adjust_cursor_roi:

 newsize = self._optimizer_logic.refocus_XY_size

 else:

 viewrange = self.xy_image.getViewBox().viewRange()

 newsize = np.sqrt(np.sum(np.ptp(viewrange, axis=1)**2)) / 20

 self.roi_xy.setSize([newsize, newsize])

 self.roi_xy.setPos([hcenter - newsize / 2, vcenter - newsize / 2])

 Example 8

 def update_roi_depth_size(self):

 """ Update the cursor size showing the optimizer scan area for the X-depth image.

 """

 hpos = self.roi_depth.pos()[0]

 vpos = self.roi_depth.pos()[1]

 hsize = self.roi_depth.size()[0]

 vsize = self.roi_depth.size()[1]

 hcenter = hpos + 0.5 * hsize

 vcenter = vpos + 0.5 * vsize

 if self.adjust_cursor_roi:

 newsize_h = self._optimizer_logic.refocus_XY_size

 newsize_v = self._optimizer_logic.refocus_Z_size

 else:

 viewrange = self.depth_image.getViewBox().viewRange()

 newsize = np.sqrt(np.sum(np.ptp(viewrange, axis=1)**2)) / 20

 newsize_h = newsize

 newsize_v = newsize

 self.roi_depth.setSize([newsize_h, newsize_v])

 self.roi_depth.setPos([hcenter - newsize_h / 2, vcenter - newsize_v / 2])

 Example 9

 def plane_fit(points, tolerance=None):

 '''

 Given a set of points, find an origin and normal using least squares

 Arguments

 ---------

 points: (n,3)

 tolerance: how non-planar the result can be without raising an error

 Returns

 ---------

 C: (3) point on the plane

 N: (3) normal vector

 '''

 C = points[0]

 x = points - C

 M = np.dot(x.T, x)

 N = np.linalg.svd(M)[0][:,-1]

 if not (tolerance is None):

 normal_range = np.ptp(np.dot(N, points.T))

 if normal_range > tol.planar:

 log.error('Points have peak to peak of %f', normal_range)

 raise ValueError('Plane outside tolerance!')

 return C, N

 Example 10

 def plot_epipolar_line(p1, p2, F, show_epipole=False):

 """ Plot the epipole and epipolar line F*x=0

 in an image given the corresponding points.

 F is the fundamental matrix and p2 are the point in the other image.

 """

 lines = np.dot(F, p2)

 pad = np.ptp(p1, 1) * 0.01

 mins = np.min(p1, 1)

 maxes = np.max(p1, 1)

 # epipolar line parameter and values

 xpts = np.linspace(mins[0] - pad[0], maxes[0] + pad[0], 100)

 for line in lines.T:

 ypts = np.asarray([(line[2] + line[0] * p) / (-line[1]) for p in xpts])

 valid_idx = ((ypts >= mins[1] - pad[1]) & (ypts <= maxes[1] + pad[1]))

 plt.plot(xpts[valid_idx], ypts[valid_idx], linewidth=1)

 plt.plot(p1[0], p1[1], 'ro')

 if show_epipole:

 epipole = compute_epipole(F)

 plt.plot(epipole[0] / epipole[2], epipole[1] / epipole[2], 'r*')

 Example 11

 def startModulation(self,

 radiusInMilliRad,

 frequencyInHz,

 centerInMilliRad):

 self._origTargetPosition= centerInMilliRad

 self.stopModulation()

 periodInSec= 1./ frequencyInHz

 assert np.ptp(self._ctrl.getWaveGeneratorTableRate()) == 0, \

 "wave generator table rate must be the same for every table"

 wgtr= self._ctrl.getWaveGeneratorTableRate()[0]

 timestep= self._ctrl.getServoUpdateTimeInSeconds() * wgtr

 lengthInPoints= periodInSec/ timestep

 peakOfTheSineCurve= self._milliRadToGcsUnits(

 self.getTargetPosition() + radiusInMilliRad)

 offsetOfTheSineCurve= self._milliRadToGcsUnits(

 self.getTargetPosition() - radiusInMilliRad)

 amplitudeOfTheSineCurve= peakOfTheSineCurve - offsetOfTheSineCurve

 wavelengthOfTheSineCurveInPoints= periodInSec/ timestep

 startPoint= np.array([0, 0.25])* wavelengthOfTheSineCurveInPoints

 curveCenterPoint= 0.5* wavelengthOfTheSineCurveInPoints

 self._ctrl.clearWaveTableData([1, 2, 3])

 self._ctrl.setSinusoidalWaveform(

 1, WaveformGenerator.CLEAR, lengthInPoints,

 amplitudeOfTheSineCurve[0], offsetOfTheSineCurve[0],

 wavelengthOfTheSineCurveInPoints, startPoint[0], curveCenterPoint)

 self._ctrl.setSinusoidalWaveform(

 2, WaveformGenerator.CLEAR, lengthInPoints,

 amplitudeOfTheSineCurve[1], offsetOfTheSineCurve[1],

 wavelengthOfTheSineCurveInPoints, startPoint[1], curveCenterPoint)

 self._ctrl.setConnectionOfWaveTableToWaveGenerator([1, 2], [1, 2])

 self._ctrl.setWaveGeneratorStartStopMode([1, 1, 0])

 self._modulationEnabled= True

 Example 12

 def compute_group(cls, data, scales, **params):

 labels = ['x', 'y']

 X = np.array(data[labels])

 res = boxplot_stats(X, whis=params['coef'], labels=labels)[1]

 try:

 n = data['weight'].sum()

 except KeyError:

 n = len(data['y'])

 if len(np.unique(data['x'])) > 1:

 width = np.ptp(data['x']) * 0.9

 else:

 width = params['width']

 if pdtypes.is_categorical(data['x']):

 x = data['x'].iloc[0]

 else:

 x = np.mean([data['x'].min(), data['x'].max()])

 d = {'ymin': res['whislo'],

 'lower': res['q1'],

 'middle': [res['med']],

 'upper': res['q3'],

 'ymax': res['whishi'],

 'outliers': [res['fliers']],

 'notchupper': res['med']+1.58*res['iqr']/np.sqrt(n),

 'notchlower': res['med']-1.58*res['iqr']/np.sqrt(n),

 'x': x,

 'width': width,

 'relvarwidth': np.sqrt(n)}

 return pd.DataFrame(d)

 Example 13

 def test_ptp(self):

 a = [3, 4, 5, 10, -3, -5, 6.0]

 assert_equal(np.ptp(a, axis=0), 15.0)

 Example 14

 def _phampcheck(self, pha, amp, axis):

 """Check phase and amplitude values."""

 # Shape checking :

 if pha.ndim != amp.ndim:

 raise ValueError("pha and amp must have the same number of "

 "dimensions.")

 # Force phase / amplitude to be at least (1, N) :

 if (pha.ndim == 1) and (amp.ndim == 1):

 pha = pha.reshape(1, -1)

 amp = amp.reshape(1, -1)

 axis = 1

 # Check if the phase is in radians :

 if np.ptp(pha) > 2 * np.pi:

 raise ValueError("Your phase is probably in degrees and should be"

 " converted in radians using either np.degrees or"

 " np.deg2rad.")

 # Check if the phase/amplitude have the same number of points on axis:

 if pha.shape[axis] != amp.shape[axis]:

 phan, ampn = pha.shape[axis], amp.shape[axis]

 raise ValueError("The phase (" + str(phan) + ") and the amplitude "

 "(" + str(ampn) + ") do not have the same number"

 " of points on the specified axis (" +

 str(axis) + ").")

 # Force the phase to be in [-pi, pi] :

 pha = (pha + np.pi) % (2 * np.pi) - np.pi

 return pha, amp, axis

 ###########################################################################

 # PROPERTIES

 ###########################################################################

 # ----------- IDPAC -----------

 Example 15

 def _postprocess_contours(self, index, times, freqs, salience):

 """Remove contours that are too short.

 Parameters

 ----------

 index : np.array

 array of contour numbers

 times : np.array

 array of contour times

 freqs : np.array

 array of contour frequencies

 salience : np.array

 array of contour salience values

 Returns

 -------

 index_pruned : np.array

 Pruned array of contour numbers

 times_pruned : np.array

 Pruned array of contour times

 freqs_pruned : np.array

 Pruned array of contour frequencies

 salience_pruned : np.array

 Pruned array of contour salience values

 """

 keep_index = np.ones(times.shape).astype(bool)

 for i in set(index):

 this_idx = (index == i)

 if np.ptp(times[this_idx]) <= self.min_contour_len:

 keep_index[this_idx] = False

 return (index[keep_index], times[keep_index],

 freqs[keep_index], salience[keep_index])

 Example 16

 def test_ptp(self):

 a = [3, 4, 5, 10, -3, -5, 6.0]

 assert_equal(np.ptp(a, axis=0), 15.0)

 Example 17

 def fit(self, X, y=None):

 """Fit it."""

 if self.n_channels is None or self.n_times is None:

 raise ValueError('Cannot fit without knowing n_channels'

 ' and n_times')

 X = X.reshape(-1, self.n_channels, self.n_times)

 deltas = np.array([np.ptp(d, axis=1) for d in X])

 epoch_deltas = deltas.max(axis=1)

 keep = epoch_deltas <= self.thresh

 self.mean_ = _slicemean(X, keep, axis=0)

 return self

 Example 18

 def _get_epochs_interpolation(self, epochs, drop_log,

 ch_type, verbose='progressbar'):

 """Interpolate the bad epochs."""

 # 1: bad segment, # 2: interpolated

 fix_log = drop_log.copy()

 ch_names = epochs.ch_names

 non_picks = np.setdiff1d(range(epochs.info['nchan']), self.picks)

 interp_channels = list()

 n_interpolate = self.n_interpolate[ch_type]

 for epoch_idx in range(len(epochs)):

 n_bads = drop_log[epoch_idx, self.picks].sum()

 if n_bads == 0:

 continue

 else:

 if n_bads <= n_interpolate:

 interp_chs_mask = drop_log[epoch_idx] == 1

 else:

 # get peak-to-peak for channels in that epoch

 data = epochs[epoch_idx].get_data()[0]

 peaks = np.ptp(data, axis=-1)

 peaks[non_picks] = -np.inf

 # find channels which are bad by rejection threshold

 interp_chs_mask = drop_log[epoch_idx] == 1

 # ignore good channels

 peaks[~interp_chs_mask] = -np.inf

 # find the ordering of channels amongst the bad channels

 sorted_ch_idx_picks = np.argsort(peaks)[::-1]

 # then select only the worst n_interpolate channels

 interp_chs_mask[

 sorted_ch_idx_picks[n_interpolate:]] = False

 fix_log[epoch_idx][interp_chs_mask] = 2

 interp_chs = np.where(interp_chs_mask)[0]

 interp_chs = [ch_name for idx, ch_name in enumerate(ch_names)

 if idx in interp_chs]

 interp_channels.append(interp_chs)

 return interp_channels, fix_log

 Example 19

 def normalizeData(X):

 mean = []

 data_range = []

 mean.append(np.mean(X[:,1]))

 mean.append(np.mean(X[:,2]))

 data_range = np.ptp(X,axis=0)[-2:]

 #print(mean,data_range)

 for i in range(len(X)):

 X[:,1][i] = (X[:,1][i] - float(mean[0]))/float(data_range[0])

 X[:,2][i] = (X[:,2][i] - float(mean[1]))/float(data_range[1])

 return X

 Example 20

 def normalizeData(X):

 mean = []

 data_range = []

 mean.append(np.mean(X[:,1]))

 mean.append(np.mean(X[:,2]))

 data_range = np.ptp(X,axis=0)[-2:]

 #print(mean,data_range)

 for i in range(len(X)):

 X[:,1][i] = (X[:,1][i] - float(mean[0]))/float(data_range[0])

 X[:,2][i] = (X[:,2][i] - float(mean[1]))/float(data_range[1])

 return X

 Example 21

 def FeatureScaling(X):

 mean = []

 data_range = []

 X1 = np.zeros((len(X),X.shape[1]))

 mean.append(np.mean(X[:,1]))

 mean.append(np.mean(X[:,2]))

 data_range = np.ptp(X,axis=0)[-2:]

 #print(mean)

 print(data_range)

 for i in range(len(X)):

 X1[:,0][i] = (X[:,0][i] - mean[0])/data_range[0]

 X1[:,1][i] = (X[:,1][i] - mean[1])/data_range[1]

 return X1

 Example 22

 def neighbours(self, effective_temperature, surface_gravity, metallicity, N,

 scales=None):

 """

 Return indices of the `N`th-nearest neighbours in the grid. The three

 parameters are scaled by the peak-to-peak range in the grid, unless

 `scales` are indicates.

 :param effective_temperature:

 The effective temperature of the star.

 :param surface_gravity:

 The surface gravity of the star.

 :param metallicity:

 The metallicity of the star.

 :param N:

 The number of neighbouring indices to return.

 :returns:

 An array of length `N` that contains the indices of the closest

 neighbours in the grid.

 """

 point = np.array([effective_temperature, surface_gravity, metallicity])

 if scales is None:

 scales = np.ptp(self._grid, axis=0)

 distance = np.sum(((self._grid - point)/scales)**2, axis=1)

 return np.argsort(distance)[:N]

 Example 23

 def nearest_neighbours(self, point, n):

 """

 Return the indices of the n nearest neighbours to the point.

 """

 stellar_parameters = _recarray_to_array(self.stellar_parameters)

 distances = np.sum(((point - stellar_parameters) \

 / np.ptp(stellar_parameters, axis=0))**2, axis=1)

 return distances.argsort()[:n]

 Example 24

 def figure_mouse_pick(self, event):

 """

 Trigger for when the mouse is used to select an item in the figure.

 :param event:

 The matplotlib event.

 """

 ycol = "abundance"

 xcol = {

 self.ax_excitation_twin: "expot",

 self.ax_line_strength_twin: "reduced_equivalent_width"

 }[event.inaxes]

 xscale = np.ptp(event.inaxes.get_xlim())

 yscale = np.ptp(event.inaxes.get_ylim())

 try:

 distance = np.sqrt(

 ((self._state_transitions[ycol] - event.ydata)/yscale)**2 \

 + ((self._state_transitions[xcol] - event.xdata)/xscale)**2)

 except AttributeError:

 # Stellar parameters have not been measured yet

 return None

 index = np.nanargmin(distance)

 # Because the state transitions are linked to the parent source model of

 # the table view, we will have to get the proxy index.

 proxy_index = self.table_view.model().mapFromSource(

 self.proxy_spectral_models.sourceModel().createIndex(index, 0)).row()

 self.table_view.selectRow(proxy_index)

 return None

 Example 25

 def normalize(vec):

 """

 Given an input vector normalize the vector

 Parameters

 ==========

 vec : array_like

 input vector to normalize

 Returns

 =======

 out : array_like

 normalized vector

 Examples

 ========

 >>> import spacepy.toolbox as tb

 >>> tb.normalize([1,2,3])

 [0.0, 0.5, 1.0]

 """

 # check to see if vec is numpy array, this is fastest

 if isinstance(vec, np.ndarray):

 out = (vec - vec.min())/np.ptp(vec)

 else:

 vecmin = np.min(vec)

 ptp = np.ptp(vec)

 out = [(val - vecmin)/ptp for val in vec]

 return out

 Example 26

 def test_ptp(self):

 N = 1000

 arr = np.random.randn(N)

 ser = Series(arr)

 self.assertEqual(np.ptp(ser), np.ptp(arr))

 # GH11163

 s = Series([3, 5, np.nan, -3, 10])

 self.assertEqual(s.ptp(), 13)

 self.assertTrue(pd.isnull(s.ptp(skipna=False)))

 mi = pd.MultiIndex.from_product([['a', 'b'], [1, 2, 3]])

 s = pd.Series([1, np.nan, 7, 3, 5, np.nan], index=mi)

 expected = pd.Series([6, 2], index=['a', 'b'], dtype=np.float64)

 self.assert_series_equal(s.ptp(level=0), expected)

 expected = pd.Series([np.nan, np.nan], index=['a', 'b'])

 self.assert_series_equal(s.ptp(level=0, skipna=False), expected)

 with self.assertRaises(ValueError):

 s.ptp(axis=1)

 s = pd.Series(['a', 'b', 'c', 'd', 'e'])

 with self.assertRaises(TypeError):

 s.ptp()

 with self.assertRaises(NotImplementedError):

 s.ptp(numeric_only=True)

 Example 27

 def _get_indice(cls, w, flux, blue, red, band=None, unit='ew', degree=1,

 **kwargs):

 """ compute spectral index after continuum subtraction

 Parameters

 ----------

 w: ndarray (nw, )

 array of wavelengths in AA

 flux: ndarray (N, nw)

 array of flux values for different spectra in the series

 blue: tuple(2)

 selection for blue continuum estimate

 red: tuple(2)

 selection for red continuum estimate

 band: tuple(2), optional

 select region in this band only.

 default is band = (min(blue), max(red))

 unit: str

 `ew` or `mag` wether equivalent width or magnitude

 degree: int (default 1)

 degree of the polynomial fit to the continuum

 Returns

 -------

 ew: ndarray (N,)

 equivalent width array

 """

 wi, fi = cls.continuum_normalized_region_around_line(w, flux, blue,

 red, band=band,

 degree=degree)

 if unit in (0, 'ew', 'EW'):

 return np.trapz(1. - fi, wi, axis=-1)

 else:

 m = np.trapz(fi, wi, axis=-1)

 m = -2.5 * np.log10(m / np.ptp(wi))

 return m

 Example 28

 def test_basic(self):

 a = [3, 4, 5, 10, -3, -5, 6.0]

 assert_equal(np.ptp(a, axis=0), 15.0)

 b = [[3, 6.0, 9.0],

 [4, 10.0, 5.0],

 [8, 3.0, 2.0]]

 assert_equal(np.ptp(b, axis=0), [5.0, 7.0, 7.0])

 assert_equal(np.ptp(b, axis=-1), [6.0, 6.0, 6.0])

 Example 29

 def plot_cdf(x, copy=True, fractional=True, **kwargs):

 """

 Add a log-log CCDF plot to the current axes.

 Arguments

 ---------

 x : array_like

 The data to plot

 copy : boolean

 copy input array in a new object before sorting it. If data is a *very*

 large, the copy can avoided by passing False to this parameter.

 fractional : boolean

 compress the data by means of fractional ranking. This collapses the

 ranks from multiple, identical observations into their midpoint, thus

 producing smaller figures. Note that the resulting plot will NOT be the

 exact CCDF function, but an approximation.

 Additional keyword arguments are passed to `matplotlib.pyplot.loglog`.

 Returns a matplotlib axes object.

 """

 N = float(len(x))

 if copy:

 x = x.copy()

 x.sort()

 if fractional:

 t = []

 for x, chunk in groupby(enumerate(x, 1), itemgetter(1)):

 xranks, _ = zip(*list(chunk))

 t.append((float(x), xranks[0] + np.ptp(xranks) / 2.0))

 t = np.asarray(t)

 else:

 t = np.c_[np.asfarray(x), np.arange(N) + 1]

 if 'ax' not in kwargs:

 ax = plt.gca()

 else:

 ax = kwargs.pop('ax')

 ax.loglog(t[:, 0], (N - t[:, 1]) / N, 'ow', **kwargs)

 return ax

 Example 30

 def test_integrate():

 subslice = slice(100,200)

 wvln = np.linspace(1000., 4000., 1024)

 flux = np.zeros_like(wvln)

 flux[subslice] = 1./np.ptp(wvln[subslice]) # so the integral is 1

 s = Spectrum(wvln*u.angstrom, flux*u.erg/u.cm**2/u.angstrom)

 # the integration grid is a sub-section of the full wavelength array

 wvln_grid = s.wavelength[subslice]

 i_flux = s.integrate(wvln_grid)

 assert np.allclose(i_flux.value, 1.) # "close" because this is float comparison

 Example 31

 def is_circle(points, scale, verbose=True):

 '''

 Given a set of points, quickly determine if they represent

 a circle or not.

 '''

 # make sure input is a numpy array

 points = np.asanyarray(points)

 scale = float(scale)

 # can only be a circle if the first and last point are the

 # same (AKA is a closed path)

 if np.linalg.norm(points[0] - points[-1]) > tol.merge:

 return None

 box = points.ptp(axis=0)

 # the bounding box size of the points

 # check aspect ratio as an early exit if the path is not a circle

 aspect = np.divide(*box)

 if np.abs(aspect - 1.0) > tol.aspect_frac:

 return None

 # fit a circle with tolerance checks

 CR = fit_circle_check(points, scale=scale)

 if CR is None:

 return None

 # return the circle as three control points

 control = angles_to_threepoint([0,np.pi*.5], *CR)

 return control

 Example 32

 def test_ptp(self):

 a = [3, 4, 5, 10, -3, -5, 6.0]

 assert_equal(np.ptp(a, axis=0), 15.0)

 Example 33

 def print_confidence_interval(ci, tabs=''):

 """Pretty print confidence interval information"""

 ci = list(ci)

 ci += [np.ptp(ci)]

 print(tabs + 'Value: {1:.04f}'.format(*ci))

 print(tabs + '95% Confidence Interval: ({0:.04f}, {2:.04f})'.format(*ci))

 print(tabs + '\tCI Width: {3:.05f}'.format(*ci))

 Example 34

 def test_ptp(self):

 a = [3, 4, 5, 10, -3, -5, 6.0]

 assert_equal(np.ptp(a, axis=0), 15.0)

 Example 35

 def ptp(a, axis=None, out=None):

 """

 Range of values (maximum - minimum) along an axis.

 The name of the function comes from the acronym for 'peak to peak'.

 Parameters

 ----------

 a : array_like

 Input values.

 axis : int, optional

 Axis along which to find the peaks. By default, flatten the

 array.

 out : array_like

 Alternative output array in which to place the result. It must

 have the same shape and buffer length as the expected output,

 but the type of the output values will be cast if necessary.

 Returns

 -------

 ptp : ndarray

 A new array holding the result, unless `out` was

 specified, in which case a reference to `out` is returned.

 Examples

 --------

 >>> x = np.arange(4).reshape((2,2))

 >>> x

 array([[0, 1],

 [2, 3]])

 >>> np.ptp(x, axis=0)

 array([2, 2])

 >>> np.ptp(x, axis=1)

 array([1, 1])

 """

 return _wrapfunc(a, 'ptp', axis=axis, out=out)

 Example 36

 def test_scalar(self):

 """

 Should return 0 for all scalar

 """

 x = scalar('x')

 p = ptp(x)

 f = theano.function([x], p)

 y = numpy.asarray(rand() * 2000 - 1000, dtype=config.floatX)

 result = f(y)

 numpyResult = numpy.ptp(y)

 self.assertTrue(numpy.array_equal(result, numpyResult))

 Example 37

 def test_vector(self):

 x = vector('x')

 p = ptp(x, 0)

 f = theano.function([x], p)

 y = rand_ranged(-1000, 1000, [100])

 result = f(y)

 numpyResult = numpy.ptp(y, 0)

 self.assertTrue(numpy.array_equal(result, numpyResult))

 Example 38

 def test_matrix_first_axis(self):

 x = matrix('x')

 p = ptp(x, 1)

 f = theano.function([x], p)

 y = rand_ranged(-1000, 1000, [100, 100])

 result = f(y)

 numpyResult = numpy.ptp(y, 1)

 self.assertTrue(numpy.array_equal(result, numpyResult))

 Example 39

 def test_matrix_second_axis(self):

 x = matrix('x')

 p = ptp(x, 0)

 f = theano.function([x], p)

 y = rand_ranged(-1000, 1000, [100, 100])

 result = f(y)

 numpyResult = numpy.ptp(y, 0)

 self.assertTrue(numpy.array_equal(result, numpyResult))

 Example 40

 def test_matrix_neg_axis(self):

 x = matrix('x')

 p = ptp(x, -1)

 f = theano.function([x], p)

 y = rand_ranged(-1000, 1000, [100, 100])

 result = f(y)

 numpyResult = numpy.ptp(y, -1)

 self.assertTrue(numpy.array_equal(result, numpyResult))

 Example 41

 def test_interface(self):

 x = matrix('x')

 p = x.ptp(1)

 f = theano.function([x], p)

 y = rand_ranged(-1000, 1000, [100, 100])

 result = f(y)

 numpyResult = numpy.ptp(y, 1)

 self.assertTrue(numpy.array_equal(result, numpyResult))

 Example 42

 def has_constant(x):

 """

 Parameters

 ----------

 x: ndarray

 Array to be checked for a constant (n,k)

 Returns

 -------

 const : bool

 Flag indicating whether x contains a constant or has column span with

 a constant

 loc : int

 Column location of constant

 """

 if np.any(np.all(x == 1, axis=0)):

 loc = np.argwhere(np.all(x == 1, axis=0))

 return True, int(loc)

 if np.any((np.ptp(x, axis=0) == 0) & ~np.all(x == 0, axis=0)):

 loc = np.any((np.ptp(x, axis=0) == 0) & ~np.all(x == 0, axis=0))

 loc = np.argwhere(loc)

 return True, int(loc)

 n = x.shape[0]

 aug_rank = matrix_rank(np.c_[np.ones((n, 1)), x])

 rank = matrix_rank(x)

 has_const = bool(aug_rank == rank)

 loc = None

 if has_const:

 out = np.linalg.lstsq(x, np.ones((n, 1)))

 beta = out[0].ravel()

 loc = np.argmax(np.abs(beta) * x.var(0))

 return has_const, loc

 Example 43

 def test_ids(panel):

 data = PanelData(panel)

 eids = data.entity_ids

 assert eids.shape == (77, 1)

 assert len(np.unique(eids)) == 11

 for i in range(0, len(eids), 7):

 assert np.ptp(eids[i:i + 7]) == 0

 assert np.all((eids[i + 8:] - eids[i]) != 0)

 tids = data.time_ids

 assert tids.shape == (77, 1)

 assert len(np.unique(tids)) == 7

 for i in range(0, 11):

 assert np.ptp(tids[i::7]) == 0

 Example 44

 def test_neighbors_accuracy_with_n_candidates():

 # Checks whether accuracy increases as `n_candidates` increases.

 n_candidates_values = np.array([.1, 50, 500])

 n_samples = 100

 n_features = 10

 n_iter = 10

 n_points = 5

 rng = np.random.RandomState(42)

 accuracies = np.zeros(n_candidates_values.shape[0], dtype=float)

 X = rng.rand(n_samples, n_features)

 for i, n_candidates in enumerate(n_candidates_values):

 lshf = LSHForest(n_candidates=n_candidates)

 ignore_warnings(lshf.fit)(X)

 for j in range(n_iter):

 query = X[rng.randint(0, n_samples)].reshape(1, -1)

 neighbors = lshf.kneighbors(query, n_neighbors=n_points,

 return_distance=False)

 distances = pairwise_distances(query, X, metric='cosine')

 ranks = np.argsort(distances)[0, :n_points]

 intersection = np.intersect1d(ranks, neighbors).shape[0]

 ratio = intersection / float(n_points)

 accuracies[i] = accuracies[i] + ratio

 accuracies[i] = accuracies[i] / float(n_iter)

 # Sorted accuracies should be equal to original accuracies

 assert_true(np.all(np.diff(accuracies) >= 0),

 msg="Accuracies are not non-decreasing.")

 # Highest accuracy should be strictly greater than the lowest

 assert_true(np.ptp(accuracies) > 0,

 msg="Highest accuracy is not strictly greater than lowest.")

 Example 45

 def test_neighbors_accuracy_with_n_estimators():

 # Checks whether accuracy increases as `n_estimators` increases.

 n_estimators = np.array([1, 10, 100])

 n_samples = 100

 n_features = 10

 n_iter = 10

 n_points = 5

 rng = np.random.RandomState(42)

 accuracies = np.zeros(n_estimators.shape[0], dtype=float)

 X = rng.rand(n_samples, n_features)

 for i, t in enumerate(n_estimators):

 lshf = LSHForest(n_candidates=500, n_estimators=t)

 ignore_warnings(lshf.fit)(X)

 for j in range(n_iter):

 query = X[rng.randint(0, n_samples)].reshape(1, -1)

 neighbors = lshf.kneighbors(query, n_neighbors=n_points,

 return_distance=False)

 distances = pairwise_distances(query, X, metric='cosine')

 ranks = np.argsort(distances)[0, :n_points]

 intersection = np.intersect1d(ranks, neighbors).shape[0]

 ratio = intersection / float(n_points)

 accuracies[i] = accuracies[i] + ratio

 accuracies[i] = accuracies[i] / float(n_iter)

 # Sorted accuracies should be equal to original accuracies

 assert_true(np.all(np.diff(accuracies) >= 0),

 msg="Accuracies are not non-decreasing.")

 # Highest accuracy should be strictly greater than the lowest

 assert_true(np.ptp(accuracies) > 0,

 msg="Highest accuracy is not strictly greater than lowest.")

 Example 46

 def test_ptp(self):

 a = [3, 4, 5, 10, -3, -5, 6.0]

 assert_equal(np.ptp(a, axis=0), 15.0)

 Example 47

 def ptp(a, axis=None, out=None):

 """

 Range of values (maximum - minimum) along an axis.

 The name of the function comes from the acronym for 'peak to peak'.

 Parameters

 ----------

 a : array_like

 Input values.

 axis : int, optional

 Axis along which to find the peaks. By default, flatten the

 array.

 out : array_like

 Alternative output array in which to place the result. It must

 have the same shape and buffer length as the expected output,

 but the type of the output values will be cast if necessary.

 Returns

 -------

 ptp : ndarray

 A new array holding the result, unless `out` was

 specified, in which case a reference to `out` is returned.

 Examples

 --------

 >>> x = np.arange(4).reshape((2,2))

 >>> x

 array([[0, 1],

 [2, 3]])

 >>> np.ptp(x, axis=0)

 array([2, 2])

 >>> np.ptp(x, axis=1)

 array([1, 1])

 """

 try:

 ptp = a.ptp

 except AttributeError:

 return _wrapit(a, 'ptp', axis, out)

 return ptp(axis, out)

 Example 48

 def ptp(a, axis=None, out=None):

 """

 Range of values (maximum - minimum) along an axis.

 The name of the function comes from the acronym for 'peak to peak'.

 Parameters

 ----------

 a : array_like

 Input values.

 axis : int, optional

 Axis along which to find the peaks. By default, flatten the

 array.

 out : array_like

 Alternative output array in which to place the result. It must

 have the same shape and buffer length as the expected output,

 but the type of the output values will be cast if necessary.

 Returns

 -------

 ptp : ndarray

 A new array holding the result, unless `out` was

 specified, in which case a reference to `out` is returned.

 Examples

 --------

 >>> x = np.arange(4).reshape((2,2))

 >>> x

 array([[0, 1],

 [2, 3]])

 >>> np.ptp(x, axis=0)

 array([2, 2])

 >>> np.ptp(x, axis=1)

 array([1, 1])

 """

 try:

 ptp = a.ptp

 except AttributeError:

 return _wrapit(a, 'ptp', axis, out)

 return ptp(axis, out)

 Example 49

 def _plot_histogram(params):

 """Function for plotting histogram of peak-to-peak values."""

 import matplotlib.pyplot as plt

 epochs = params['epochs']

 p2p = np.ptp(epochs.get_data(), axis=2)

 types = list()

 data = list()

 if 'eeg' in params['types']:

 eegs = np.array([p2p.T[i] for i,

 x in enumerate(params['types']) if x == 'eeg'])

 data.append(eegs.ravel())

 types.append('eeg')

 if 'mag' in params['types']:

 mags = np.array([p2p.T[i] for i,

 x in enumerate(params['types']) if x == 'mag'])

 data.append(mags.ravel())

 types.append('mag')

 if 'grad' in params['types']:

 grads = np.array([p2p.T[i] for i,

 x in enumerate(params['types']) if x == 'grad'])

 data.append(grads.ravel())

 types.append('grad')

 params['histogram'] = plt.figure()

 scalings = _handle_default('scalings')

 units = _handle_default('units')

 titles = _handle_default('titles')

 colors = _handle_default('color')

 for idx in range(len(types)):

 ax = plt.subplot(len(types), 1, idx + 1)

 plt.xlabel(units[types[idx]])

 plt.ylabel('count')

 color = colors[types[idx]]

 rej = None

 if epochs.reject is not None and types[idx] in epochs.reject.keys():

 rej = epochs.reject[types[idx]] * scalings[types[idx]]

 rng = [0., rej * 1.1]

 else:

 rng = None

 plt.hist(data[idx] * scalings[types[idx]], bins=100, color=color,

 range=rng)

 if rej is not None:

 ax.plot((rej, rej), (0, ax.get_ylim()[1]), color='r')

 plt.title(titles[types[idx]])

 params['histogram'].suptitle('Peak-to-peak histogram', y=0.99)

 params['histogram'].subplots_adjust(hspace=0.6)

 try:

 params['histogram'].show(warn=False)

 except Exception:

 pass

 if params['fig_proj'] is not None:

 params['fig_proj'].canvas.draw()

 Example 50

 def relim_axes(axes, percent=20):

 """

 Generate new axes for a matplotlib axes based on the collections present.

 :param axes:

 The matplotlib axes.

 :param percent: [optional]

 The percent of the data to extend past the minimum and maximum data

 points.

 :returns:

 A two-length tuple containing the lower and upper limits in the x- and

 y-axis, respectively.

 """

 data = np.vstack([item.get_offsets() for item in axes.collections \

 if isinstance(item, PathCollection)])

 if data.size == 0:

 return (None, None)

 data = data.reshape(-1, 2)

 x, y = data[:,0], data[:, 1]

 # Only use finite values.

 finite = np.isfinite(x*y)

 x, y = x[finite], y[finite]

 if x.size > 1:

 xlim = [

 np.min(x) - np.ptp(x) * percent/100.,

 np.max(x) + np.ptp(x) * percent/100.,

 ]

 elif x.size == 0:

 xlim = None

 else:

 xlim = (x[0] - 1, x[0] + 1)

 if y.size > 1:

 ylim = [

 np.min(y) - np.ptp(y) * percent/100.,

 np.max(y) + np.ptp(y) * percent/100.

 ]

 elif y.size == 0:

 ylim = None

 else:

 ylim = (y[0] - 1, y[0] + 1)

 axes.set_xlim(xlim)

 axes.set_ylim(ylim)

 return (xlim, ylim)

你可能感兴趣的:([转载] arrayproxy转numpy_Python numpy.ptp() 使用实例)