进程池是由服务器预先创建一组子进程,从而实现并发。线程池中的线程数量应该和CPU数量差不多。进程池中所有子进程都运行着相同的代码,并具有相同的属性。由于进程池在服务启动之初就创建好了,所以每个子进程都相对“干净”。
当有新任务到来时,主进程将通过某种方式选择进程池中的某一个子进程来为其服务,其主要通过两种方式:
主进程需要某种通知机制来告诉紫禁城由新任务需要处理,并传递必要的数据。最简单的方法是在父进程和子进程之间预先建立好一条管道,然后通过该管道来实现所有的进程间通信;也可以将这些数据定义为全局的。
当客户的任务是无状态的,可以考虑使用不同的子进程来为该客户的不同请求服务。
#ifndef PROCESSPOOL_H
#define PROCESSPOOL_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
// 描述一个子进程的类,m_pid是目标子进程的PID,m_pipefd是父进程和子进程通信的管道
class process{
public:
process():m_pid(1){}
public:
pid_t m_pid;
int m_pipefd[2];
};
// 进程池类,将其定义为模板类,模板参数是处理逻辑任务的类
template
class processpool{
private:
// 将构造函数定义为私有,只能通过creat静态函数创建实例
processpool(int listenfd, int process_number = 8);
public:
// 单体模式,保证程序最多创建一个processpool实例
static processpool* create(int listenfd, int process_number = 8){
if(!m_instance){
m_instance = new processpool(listenfd, process_number);
}
return m_instance;
}
~processpool(){
delete [] m_sub_process;
}
// 启动进程池
void run();
private:
// 统一事件源
void setup_sig_pipe();
void run_parent();
void run_child();
private:
// 进程池允许的最大子进程数量
static const int MAX_PROCESS_NUMBER = 16;
// 每个子进程最多能处理的客户数量
static const int USER_PER_PROCESS = 65536;
// epoll最多能处理的事件数
static const int MAX_EVENT_NUMBER = 10000;
// 进程池中的进程总数
int m_process_number;
// 子进程在池中的序号,从0开始
int m_idx;
// 每个进程都有一个epoll内核事件表,用m_epollfd标识
int m_epollfd;
// 监听sockte
int m_listenfd;
// 子进程通过m_stop决定是否停止运行
int m_stop;
// 保存所有子进程的描述信息
process* m_sub_process;
// 进程池静态实例
static processpool* m_instance;
};
template
processpool* processpool::m_instance = NULL;
// 用于处理信号的管道,以实现统一事件源,后面称之为信号管道
static int sig_pipefd[2];
static int setnonblocking(int fd){
int old_option = fcntl(fd, F_GETFL);
int new_option = old_option | O_NONBLOCK;
fcntl(fd, F_SETFL, new_option);
return old_option;
}
static void addfd(int epollfd, int fd){
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET;
epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
setnonblocking(fd);
}
// 从epollfd标志的epoll内核事件表中删除fd上的所有注册事件
static void removefd(int epollfd, int fd){
epoll_ctl(epollfd, EPOLL_CTL_DEL, fd, 0);
close(fd);
}
static void sig_handler(int sig){
int save_errno = errno;
int msg = sig;
send(sig_pipefd[1], (char*)&msg, 1, 0);
errno = save_errno;
}
static void addsig(int sig, void(handler)(int), bool restart = true){
struct sigaciton sa;
memset(&sa, '\0', sizeof(sa));
sa.sa_handler = handler;
if(restart){
sa.sa_flags |= SA_RESTART;
}
sigfillset(&sa.sa_mask);
assert(sigaction(sig, &sa, NULL)!=-1);
}
// 进程池构造函数,参数listenfd是监听socket,process_number指定进程池中子进程的数量
template
processpool::processpool(int listenfd, int process_number)
:m_listenfd(listenfd),m_process_number(process_number),
m_idx(-1),m_stop(false){
assert((process_number>0)&&(process_number<=MAX_PROCESS_NUMBER));
m_sub_process = new process[process_number];
//创建process_number个子进程,并建立它们和夫进程之间的管道
for(int i=0;i=0);
if(m_sub_process[i].m_pid>0){
close(m_sub_process[i].m_pipefd[1]);
continue;
}
else{
close(m_sub_process[i].m_pipefd[0]);
m_idx = i;
break;
}
}
}
// 统一事件源
template
void processpool::setup_sig_pipe(){
// 创建epoll事件监听表和信号管道
m_epollfd = epoll_create(5);
assert(m_epollfd != -1);
int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, sig_pipefd);
assert(ret!=-1);
setnonblocking(sig_pipefd[1]);
addfd(m_epollfd, sig_pipefd[0]);
// 设置信号处理函数
addsig(SIGHLD, sig_handler);
addsig(SIGTERM, sig_handler);
addsig(SIGINT, sig_handler);
addsig(SIGPIPE, SIG_IGN);
}
// 父进程中m_idx为-1,子进程m_idx值大于等于0,由此判断运行父进程代码还是子进程代码
template
void processpool::run(){
if(m_idx != -1){
run_child();
return;
}
run_parent();
}
template
void processpool::run_child(){
setup_sig_pipe();
// 每个子进程通过其在进程池的信号值m_idx找到与父进程通信的管道
int pipefd = m_sub_process[m_idx].m_pipefd[1];
// 子进程监听管道信号描述符pipefd,父进程通过其来通知子进程accept新连接
addfd(m_epollfd, pipefd);
epoll_event events[MAX_EVENT_NUMBER];
T* users = new T[USER_PER_PROCESS];
assert(users);
int number = 0;
int ret = -1;
while(!m_stop){
number = epoll_wait(m_epollfd, events, MAX_EVENT_NUMBER, -1);
if((number<0)&&(errno!=EINTR)){
printf("epoll failure\n");
break;
}
for(int i=0;i0){
continue;
}
break;
}
case SIGTERM:
case SIGINT:{
m_stop = true;
break;
}
default:{
break;
}
}
}
}
}
// 如果是其他可读数据, 必然是客户请求到来,调用逻辑处理对象的process方法处理
else if(events[i].events&EPOLLIN){
users[sockfd].process();
}
else{
continue;
}
}
}
delete [] users;
users = NULL;
close(pipefd);
// colse(m_listenfd); // 应该由m_listenfd创建者关闭
close(m_epollfd);
}
template
void processpool::run_parent(){
setup_sig_pipe();
// 父进程监听m_listenfd
addfd(m_epollfd, m_listenfd);
epoll_event events[MAX_EVENT_NUMBER];
int sub_process_counter = 0;
int new_conn = 1;
int number = 0;
int ret = -1;
while(!m_stop){
number = epoll_wait(m_epollfd, events, MAX_EVENT_NUMBER, -1);
if((number<0)&&(errno!=EINTR)){
printf("epoll failure\n");
break;
}
for(int i=0;i0){
for(int i=0;i
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "./processpool.h"
// 用于处理客户CGI请求的类,可以作为processpool类的模板参数
class cgi_conn{
public:
cgi_conn(){}
~cgi_conn(){}
// 初始化客户端,清空缓冲区
void init(int epollfd, int sockfd, const sockaddr_in& client_addr){
m_epollfd = epollfd;
m_sockfd = sockfd;
m_address = client_addr;
memset(m_buf, '\0', BUFFER_SIZE);
m_read_idx = 0;
}
void process(){
int idx = 0;
int ret = -1;
// 循环读取和分析客户数据
while(true){
idx = m_read_idx;
ret = recv(m_sockfd, m_buf+idx, BUFFER_SIZE-1-idx, 0);
// 若读操作发生错误,则关闭客户连接,如果是暂时无数据可读,则退出循环
if(ret<0){
if(errno!=EAGAIN){
removefd(m_epollfd, m_sockfd);
}
break;
}
// 如果对方关闭连接,则服务器也关闭连接
else if(ret==0){
removefd(m_epollfd, m_sockfd);
break;
}
else{
m_read_idx += ret;
printf("user content is: %s\n", m_buf);
//如果遇到"\r\n",则开始处理客户请求
for(;idx=1)&&(m_buf[idx-1]=='\r')&&(m_buf[idx]=='\n')){
break;
}
}
// 如果没遇到字符"\r\n",则需要处理更多客户数据
if(idx==m_read_idx){
continue;
}
m_buf[idx-1] = '\0';
char* file_name = m_buf;
// 判断客户要运行的CGI程序是否存在
if(access(file_name, F_OK)==-1){
removefd(m_epollfd,m_sockfd);
break;
}
// 创建子进程执行CGI程序
ret = fork();
if(ret == -1){
removefd(m_epollfd, m_sockfd);
break;
}
else if(ret>0){
// 父进程只需要关闭连接
removefd(m_epollfd, m_sockfd);
break;
}
else{
// 子进程将标准输出定向到m_sockfd,并执行CGI程序
close(STDOUT_FILENO);
dup(m_sockfd);
execl(m_buf, m_buf, 0);
exit(0);
}
}
}
}
private:
// 读缓冲区的大小
static const int BUFFER_SIZE = 1024;
static int m_epollfd;
int m_sockfd;
sockaddr_in m_address;
char m_buf[BUFFER_SIZE];
// 标记缓冲区中已经读入客户数据最后一个自己的下一个位置
int m_read_idx;
};
int cgi_conn::m_epollfd = -1;
// 主函数
int main(int argc, char* argv[]){
if(argc<=2){
printf("usage: %s ip_address port_number \n", basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);
int listenfd = socket(PF_INET, SOCK_STERAM, 0);
assert(listenfd>=0);
int ret = 0;
struct sockaddr_in address;
bzero(&address, sizeof(address));
address.sin_family = AF_INET;
inet_pton(AF_INET, ip, &address.sin_addr);
address.sin_port = htons(port);
ret = bind(listenfd, (struct sockaddr*)&address, sizeof(address));
assert(ret!=-1);
ret = listen(listenfd, 5);
assert(ret!=-1);
processpool* pool = processpool::create(listenfd);
if(pool){
pool->run();
delete pool;
}
close(listenfd);
return 0;
}
#ifndef THREADPOOL_H
#define THREADPOOL_H
#include
#include
#include
#include
#include "./locker.h"
// 线程池类
template
class threadpool{
public:
threadpool(int thread_number=8,int max_requests=10000);
~threadpool();
// 往请求队列中添加任务
bool append(T* request);
private:
// 工作线程运行函数,不断从工作队列中取出任务并执行
static void* worker(void* arg);
void run();
private:
int m_thread_number; // 线程数
int m_max_requests; // 请求队列中允许的最大请求数
pthread_t* m_threads; // 线程池的组数
std::list m_workqueue; // 请求队列
locker m_queuelocker; // 请求队列的互斥锁
sem m_queuestat; // 是否有任务需要处理
bool m_stop; // 是否结束线程
};
template
threadpool::threadpool(int thread_number, int max_requests):
m_thread_number(thread_number),m_max_requests(max_requests),
m_stop(false),m_threads(NULL){
if((thread_number<=0)||(max_requests<=0)){
throw std::exception();
}
m_thread = new pthread_t(m_thread_number);
if(!m_threads){
throw std::exception();
}
// 创建thread_number个线程,并设置为脱离线程
for(int i=0;i
threadpool::~threadpool(){
delete [] m_threads;
m_stop = true;
}
template
bool threadpool::append(T* requests){
// 操作工作队列要加锁
m_queuelocker.lock();
if(m_queuelocker.size()>m_max_requests){
m_queuelocker.unlock();
return false;
}
m_workqueue.push_back(requests);
m_queuelocker.unlock();
m_queuestat.post(); // 添加信号量
return true;
}
template
void* threadpool::worker(void* arg){
threadpool* pool = (threadpool*)arg;
pool->run();
return pool;
}
template
void threadpool::run(){
while(!m_stop){
m_queuestat.wait();
m_queuelocker.lock();
if(m_workqueue.empty()){
m_queuelocker.unlock();
continue;
}
T* request = m_workqueue.front();
m_workqueue.pop_front();
m_queuelocker.unlock();
if(!request){
continue;
}
request->process();
}
}
#endif // !THREADPOOL_H
http_conn.h文件
#ifndef HTTPCONNECTION_H
#define HTTPCONNECTION_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "./locker.h"
class http_conn{
public:
// 文件名的最大长度
static const int FILENAME_LEN = 200;
// 读缓冲区的大小
static const int READ_BUFFER_SIZE = 2048;
// 写缓冲区的大小
static const int WRITE_BUFFER_SIZE = 1024;
// HTTP请求方法,仅支持GET
enum METHOD {GET = 0, POST, HEAD, PUT, DELETE,
TRACE, OPTIONS, CONNECT, PATCH};
// 解析客户请求时,主状态机所处的状态
enum CHECK_STATE {
CHECK_STATE_REQUESTLINE = 0, // 当前正在分析请求行
CHECK_STATE_HEADER, // 当前正在分析头部字段
CHECK_STATE_CONTENT
};
// 从在状态机的三种可能状态,即行的读取状态
enum LINE_STATUS {
LINE_OK = 0, // 读取到一个完整的行
LINE_BAD, // 行出错
LINE_OPEN // 行数据尚且不完整
};
// 服务器处理HTTP请求的结果
enum HTTP_CODE {
NO_REQUEST, // 请求不完整,需要继续获取客户数据
GET_REQUEST, // 获得了一个完整的客户请求
BAD_REQUEST, // 客户请求有语法错误
NO_RECOURCE,
FORBIDDEN_REQUEST, // 客户对资源没有足够的访问权限
FILE_REQUEST,
INTERNAL_ERROR, // 服务器内部错误
CLOSE_CONNECTION // 客户端已经关闭连接
};
public:
http_conn(){}
~http_conn(){}
public:
// 初始化新接受的连接
void init(int sockfd, const sockaddr_in& addr);
// 关闭连接
void close_conn(bool real_close = true);
// 处理客户请求
void process();
// 非阻塞读操作
bool read();
// 非阻塞写操作
bool write();
private:
// 初始化连接
void init();
// 解析HTTP请求
HTTP_CODE process_read();
// 填充HTTP应答
bool process_write(HTTP_CODE ret);
// 被process_read调用以分析HTTP请求
HTTP_CODE parse_request_line(char* text);
HTTP_CODE parse_headers(char* text);
HTTP_CODE parse_content(char* text);
HTTP_CODE do_request();
char* get_lin() { return m_read_buf+m_start_line; }
LINE_STATUS parse_line();
// 被process_write调用以填充HTTP应答
void unmap();
bool add_response(const char* format, ... );
bool add_content(const char* content);
bool add_status_line(int status, const char* title);
bool add_headers(int content_length);
bool add_content_length(int content_length);
bool add_linger();
bool add_blank_line();
public:
// 所有socket上的事件都被注册到同一个epoll内核事件中
static int m_epollfd;
// 统计用户数量
static int m_user_count;
private:
// 该HTTP连接的socket和对方的socket地址
int m_sockfd;
sockaddr_in m_address;
// 读缓冲区
char m_read_buf[READ_BUFFER_SIZE];
// 标识都缓冲住已经读入客户端数据的最后一个字节的下一个位置
int m_read_idx;
// 当前正在分析的字符在都缓冲区的位置
int m_checked_idx;
// 当前正在解析的行的起始位置
int m_start_line;
// 写缓冲区
char m_write_buf[WRITE_BUFFER_SIZE];
// 写缓冲区中待发送的字节数
int m_write_idx;
// 主状态机当前所处的状态
CHECK_STATE m_check_state;
// 请求方法
METHOD m_method;
// 客户请求的目标文件的完整路径
char m_real_file[FILENAME_LEN];
// 客户请求的目标文件的文件名
char* m_url;
// HTTP协议版本号,仅支持HTTP/1.1
char* m_version;
// 主机名
char* m_host;
// HTTP请求的消息体长度
int m_content_length;
// HTTP请求是否保持连接
bool m_linger;
// 客户请求的目标文件被mmap到内存中的起始位置
char* m_file_address;
// 目标文件的状态
struct stat m_file_stat;
// 采用writev执行写操作
struct iovec m_iv[2];
// 被写内存块的数量
int m_iv_count;
};
#endif // !HTTPCONNECTION_H
http_conn.cpp文件
#include "./http_conn.h"
// 定义HTTP响应的一些状态信息
const char* ok_200_title = "OK";
const char* error_400_title = "Bad Request";
const char* error_400_form = "Your request has bad syntax or is inherently impossible to satisfy.\n";
const char* error_403_title = "Forbidden";
const char* error_403_form = "You do not have permission to get file from this server.\n";
const char* error_404_title = "Not Found";
const char* error_404_form = "The requested file was not found on this server.\n";
const char* error_500_title = "Internal Error";
const char* error_500_form = "There was an unusual problen serving the requested file.\n";
// 网站的根目录
const char* doc_root = "/var/www/html";
static int setnonblocking(int fd){
int old_option = fcntl(fd, F_GETFL);
int new_option = old_option | O_NONBLOCK;
fcntl(fd, F_SETFL, new_option);
return old_option;
}
// 将fd上的EPOLLIN和EPOLLET事件注册到epollfd指示上的epoll内核事件中
// 参数oneshot指定是否注册fd上的EPOLLONESHOT事件
static void addfd(int epollfd, int fd, bool one_shot){
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET | EPOLLRDHUP;
if(one_shot){
event.events |= EPOLLONESHOT;
}
epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
setnonblocking(fd);
}
// 从epollfd标志的epoll内核事件表中删除fd上的所有注册事件
static void removefd(int epollfd, int fd){
epoll_ctl(epollfd, EPOLL_CTL_DEL, fd, 0);
close(fd);
}
void modfd(int epollfd, int fd, int ev){
epoll_event event;
event.data.fd = fd;
event.events = ev | EPOLLET | EPOLLONESHOT | EPOLLRDHUP;
epoll_ctl(epollfd, EPOLL_CTL_MOD, fd, &event);
}
int http_conn::m_user_count = 0;
int http_conn::m_epollfd = -1;
void http_conn::close_conn(bool real_close){
if(real_close && (m_sockfd != -1)){
removefd(m_epollfd, m_sockfd);
m_sockfd = -1;
m_user_count--; // 关闭连接时,客户总量-1
}
}
void http_conn::init(int sockfd, const sockaddr_in& addr){
m_sockfd = sockfd;
m_address = addr;
// 下面两行避免TIME_WAIT状态,仅用于调试,实际使用应当去掉
int reuse = 1;
setsockopt(m_sockfd, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse));
addfd(m_epollfd, sockfd, true);
m_user_count++;
init();
}
void http_conn::init(){
m_check_state = CHECK_STATE_REQUESTLINE;
m_linger = false;
m_method = GET;
m_url = 0;
m_version = 0;
m_content_length = 0;
m_host = 0;
m_start_line = 0;
m_checked_idx = 0;
m_read_idx = 0;
m_write_idx = 0;
memset(m_read_buf, '\0', READ_BUFFER_SIZE);
memset(m_write_buf, '\0', WRITE_BUFFER_SIZE);
memset(m_real_file, '\0', FILENAME_LEN);
}
// 从状态机,用于解析出一行内容
http_conn::LINE_STATUS http_conn::parse_line(){
char temp;
// checked_index指向buffer当前分析的字节
// read_index指向buffer中客户数据为不得下一个字节
// 第checked_index~(read_index-1)字节右下面进行分析
for(; m_checked_idx1) && m_read_buf[m_checked_idx-1] == '\r'){
m_read_buf[m_checked_idx-1] = '\0';
m_read_buf[m_checked_idx++] = '\0';
return LINE_OK;
}
return LINE_BAD;
}
return LINE_OPEN;
}
}
// 循环读取客户数据,知道无数据可读或者对方关闭连接
bool http_conn::read(){
if(m_read_idx >= READ_BUFFER_SIZE){
return false;
}
int bytes_read = 0;
while(true){
bytes_read = recv(m_sockfd, m_read_buf+m_read_idx, READ_BUFFER_SIZE-m_read_idx, 0);
if(bytes_read == -1){
if(errno==EAGAIN || errno == EWOULDBLOCK){
break;
}
return false;
}
else if(bytes_read==0){
return false;
}
m_read_idx += bytes_read;
}
return ture;
}
// 解析HTTP请i去行,获取请求方法、目标URL、以及HTTP版本号
http_conn::HTTP_CODE http_conn::parse_request_line(char* text){
m_url = strpbrk(text, "\t");
// 如果请求行中没有空白字符或者"\t",则请求有问题
if(!m_url){
return BAD_REQUEST;
}
*m_url++ = '\0';
char* method = text;
if(strcasecmp(method, "GET") == 0){ // 仅支持GET方法
// printf("The request method is GET\n");
m_method = GET;
}
else{
return BAD_REQUEST;
}
m_url += strspn(m_url, "\t");
m_version = strpbrk(m_url, "\t");
if(!m_version){
return BAD_REQUEST;
}
*m_version++ = '\0';
m_version += strspn(m_version, "\t");
// 仅支持HTTP/1.1
if(strcasecmp(m_version, "HTTP/1.1")!=0){
return BAD_REQUEST;
}
// 检查URL是否合法
if(strncasecmp(m_url, "http://", 7) == 0){
m_url += 7;
m_url = strchr(m_url, '/');
}
if(!m_url || m_url[0]!='/'){
return BAD_REQUEST;
}
printf("The request URL is: %s\n", url);
// HTTP请求处理完毕,状态转移到头部字段分析
m_check_state = CHECK_STATE_HEADER;
return NO_REQUEST;
}
// 解析HTTP一个头部信息
http_conn::HTTP_CODE http_conn::parse_headers(char* text){
// 如果遇到空行,则标识头部字段全部解析完毕
if(text[0] == '\0'){
// 如果HTTP有消息体,则还需要读取消息体,状态机转移到CHECK_STATE_CONTENT状态
if(m_content_length != 0){
m_check_state = CHECK_STATE_CONTENT;
return NO_REQUEST;
}
// 否则得到一个完整的HTTP请求
return GET_REQUEST;
}
// 处理Connection头部字段
else if(strncasecmp(text, "Connection:", 11)==0){
text += 11;
text += strspn(text, "\t");
if(strcasecmp(text, "keep-alive")==0){
m_linger = true;
}
}
// 处理Content-Length头部字段
else if(strncasecmp(text, "Content-Length:", 15)==0){
text += 15;
text += strspn(text, "\t");
m_content_length = atol(text);
}
// 处理Host头部字段
else if(strcasecmp(text, "Host:", 5)==0){
text += 5;
text += strspn(text, "\t");
m_host = text;
}
else{
printf("opp! Unkonw header %s\n", text);
}
return NO_REQUEST;
}
// 我们没有真正的解析HTTP请求的消息体,只是判断是否被完全读入
http_conn::HTTP_CODE http_conn::parse_content(char* text){
if(m_read_idx >= m_content_length+m_checked_idx){
text[m_content_length] = '\0';
return GET_REQUEST;
}
return NO_REQUEST;
}
// 主状态机
http_conn::HTTP_CODE http_conn::process_read(){
LINE_STATUS line_status = LINE_OK; // 记录当前行的读取状态
HTTP_CODE ret = NO_REQUEST; // 记录HTTP请求的处理结果
char* text = 0;
// 主状态机,用于从buffer中取出所有完整的行
while(((m_check_state==CHECK_STATE_CONTENT)&&(line_status==LINE_OK))||
((line_status=parse_line())==LINE_OK)){
text = get_line();
m_start_line = m_checked_idx;
printf("got 1 http line:%s\n", text);
// checkstate记录主状态机当前的状态
switch(m_check_state){
case CHECK_STATE_REQUESTLINE:{ // 状态一:分析请求行
ret = parse_request_line(text);
if(ret==BAD_REQUEST){
return BAD_REQUEST;
}
break;
}
case CHECK_STATE_HEADER:{ // 状态二:分析头部字段
ret = parse_headers(text);
if(ret == BAD_REQUEST){
return BAD_REQUEST;
}
else if(ret == GET_REQUEST){
return GET_REQUEST;
}
break;
}
case CHECK_STATE_CONTENT:{
ret = parse_content(text);
if(ret == GET_REQUEST){
return do_request();
}
line_status == LINE_OPEN;
break;
}
default:{
return INTERNAL_ERROR;
}
}
}
return NO_REQUEST;
}
// 得到一个完整的、正确的HTTP请求时分析目标文件属性
http_conn::HTTP_CODE http_conn::do_request(){
strcpy(m_real_file, doc_root);
int len = strlen(doc_root);
strncpy(m_real_file+len, m_url, FILENAME_LEN-len-1);
if(stat(m_real_file,&m_file_stat)<0){
return NO_REQUEST;
}
if(!(m_file_stat.st_mode & S_IROTH)){
return FORBIDDEN_REQUEST;
}
if(S_ISDIR(m_file_stat.st_mode)){
return BAD_REQUEST;
}
int fd = open(m_real_file, O_RDONLY);
m_file_address = (char*)mmap(0, m_file_stat.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
close(fd);
return FILE_REQUEST;
}
// 对内存映射区执行munmap操作
void http_conn::unmap(){
if(m_file_address){
munmap(m_file_address, m_file_stat.st_size);
m_file_address=0;
}
}
// 写HTTP响应
bool http_conn::write(){
int temp = 0;
int bytes_have_send = 0;
int bytes_to_send = m_write_idx;
if(bytes_to_send==0){
modfd(m_epollfd, m_sockfd, EPOLLIN);
init();
return true;
}
while(1){
temp = writev(m_sockfd, m_iv, m_iv_count);
if(temp<=-1){
// 如果TCP写缓冲没有空间,则等待下一轮EPOLLOUT事件
if(errno==EAGAIN){
modfd(m_epollfd, m_sockfd, EPOLLOUT);
return true;
}
unmap();
return false;
}
bytes_to_send -= temp;
bytes_have_send += temp;
if(bytes_to_send<=bytes_have_send){
// 发送HTTP相应成功,根据Connection字段决定是否关闭连接
unmap();
if(m_linger){
init();
modfd(m_epollfd, m_sockfd, EPOLLIN);
return true;
}
else{
modfd(m_epollfd, m_sockfd, EPOLLIN);
return false;
}
}
}
}
// 往写缓冲中写入待发送的数据
bool http_conn::add_response(const char* format, ...){
if(m_write_idx>=WRITE_BUFFER_SIZE){
return false;
}
va_list arg_list;
va_start(arg_list, format);
int len = vsnprintf(m_write_buf+m_write_idx, WRITE_BUFFER_SIZE-1-m_write_idx, format, arg_list);
if(len>=(WRITE_BUFFER_SIZE-1-m_write_idx)){
return false;
}
m_write_idx += len;
va_end(arg_list);
return true;
}
bool http_conn::add_status_line(int status, const char* title){
return add_response("%s %d %s\r\n", "HTTP/1.1",status,title);
}
bool http_conn::add_headers(int content_len){
add_content_length(content_len);
add_linger();
add_blank_line();
}
bool http_conn::add_content_length(int content_len){
return add_response("Content-Length: %d\r\n", content_len);
}
bool http_conn::add_linger(){
return add_response("Connection: %s\r\n", (m_linger==true)?"keep-alive":"close");
}
bool http_conn::add_blank_line(){
return add_response("%s", "\r\n");
}
bool http_conn::add_content(const char* content){
return add_response("%s", content);
}
bool http_conn::process_write(HTTP_CODE ret){
switch(ret){
case INTERNAL_ERROR:{
add_status_line(500, error_500_title);
add_headers(strlen(error_500_form));
if(!add_content(error_500_form)){
return false;
}
break;
}
case BAD_REQUEST:{
add_status_line(400, error_400_title);
add_headers(strlen(error_400_form));
if(!add_content(error_400_form)){
return false;
}
break;
}
case NO_RESOURCE:{
add_status_line(404, error_404_title);
add_headers(strlen(error_404_form));
if(!add_content(error_404_form)){
return false;
}
break;
}
case FORBIDDEN_REQUEST:{
add_status_line(403, error_403_title);
add_headers(strlen(error_403_form));
if(!add_content(error_403_form)){
return false;
}
break;
}
case FILE_REQUEST:{
add_status_line(200, ok_200_title);
if(m_file_stat.st_size!=0){
add_headers(m_file_stat.st_size);
m_iv[0].iov_base = m_write_buf;
m_iv[0].iov_len = m_write_idx;
m_iv[1].iov_base = m_file_address;
m_iv[1].iov_len = m_file_stat.st_size;
m_iv_count = 2;
return true;
}
else{
const char* ok_string = "";
add_headers(strlen(ok_string));
if(!add_content(ok_string)){
return false;
}
}
}
default:{
return false;
}
}
m_iv[0].iov_base = m_write_buf;
m_iv[0].iov_len = m_write_idx;
m_iv_count = 1;
return true;
}
// 线程池中的工作线程调用,处理HTTP请求的入口函数
void http_conn::process(){
HTTP_CODE read_ret = process_read();
if(read_ret==NO_REQUEST){
modfd(m_epollfd, m_sockfd, EPOLLIN);
return;
}
bool write_ret = process_write(read_ret);
if(!write_ret){
close_conn();
}
modfd(m_epollfd, m_sockfd, EPOLLIN);
}
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "locker.h"
#include "threadpool.h"
#include "http_conn.h"
#define MAX_FD 65536
#define MAX_EVENT_NUMBER 10000
extern int addfd(int epollfd, int fd, bool one_shot);
extern int removerfd(int epollfd, int fd);
// 设置信号的处理函数
void addsig(int sig){
struct sigaction sa;
memset(&sa, '\0', sizeof(sa));
sa.sa_handler = sig_handler;
sa.sa_flags != SA_RESTART;
sigfillset(&sa.sa_mask);
assert(sigaction(sig, &sa, NULL)!=-1);
}
void show_error(int connfd, const char* info){
printf("%s", info);
send(connfd, info, strlen(info), 0);
close(connfd);
}
int main(int argc, char* argv[]){
if(argc<=2){
printf("usage: %s ip_address port_number\n", basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);
// 忽略SIGPIPE信号
addsig(SIGPIPE, SIG_IGN);
// 创建线程池
threadpool* pool = NULL;
try{
pool = new threadpool;
}
catch(...){
return 1;
}
// 预先为每个可能的客户连接分配一个http_conn对象
http_conn* users = new http_conn[MAX_FD];
assert(users);
int user_count = 0;
int listenfd = socket(PF_INET, SOCK_STREAM, 0);
assert(listenfd >= 0);
struct linger tmp = {1, 0};
setsockopt(listenfd, SOL_SOCKET, SO_LINGER, &tmp, sizeof(tmp));
int ret = 0;
struct sockaddr_in address;
bzero(&address, sizeof(address));
address.sin_family = AF_INET;
inet_pton(AF_INET, ip, &address.sin_addr);
address.sin_port = htons(port);
ret = bind(listenfd, (struct sockaddr*)&address, sizeof(address));
assert(ret>=0);
ret = listen(listenfd, 5);
assert(ret>=0);
epoll_event events[MAX_EVENT_NUMBER];
int epollfd = epoll_create(5);
assert(epollfd!=-1);
addfd(epollfd, listenfd, false);
http_conn::m_epollfd = epollfd;
while (true)
{
int number = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, -1);
if((number<0)&&(errno!=EINTR)){
printf("epoll failure\n");
break;
}
for(int i=0;i= MAX_FD){
show_error(connfd, "Internal server busy");
continue;
}
// 初始化客户连接
users[connfd].init(connfd, client_addres);
}
else if(events[i].events&(EPOLLRDHUP|EPOLLHUP|EPOLLERR)){
// 如果有异常,直接关闭客户连接
users[sockfd].close_conn();
}
else if(events[i].events&EPOLLIN){
// 根据读的结果,决定时将任务添加到线程池还是关闭连接
if(users[sockfd].read()){
pool->append(users+sockfd);
}
else{
users[sockfd].colse_conn();
}
}
else if(events[i].events&EPOLLOUT){
// 根据写的结果,决定是否关闭连接
users[sockfd].close_conn();
}
else{}
}
}
close(epollfd);
close(listenfd);
delete [] users;
delete pool;
return 0;
}