- YOLOv13_SSOD:基于超图关联增强的半监督目标检测框架(原创创新算法)
YOLOv13_SSOD:基于超图关联增强的半监督目标检测框架项目背景随着深度学习技术的快速发展,目标检测在各个领域都取得了显著的进展。然而,现有的监督学习方法在实际应用中面临着标注数据稀缺、泛化能力不足等挑战。特别是在火灾烟雾检测、工业质检等特定场景中,获取大量高质量标注数据的成本极高。为了解决这一问题,本项目基于最新发布的YOLOv13架构,结合EfficientTeacher半监督学习框架,
- USB串口通信、握手协议、深度学习等技术要点
深度学习教程,
深度学习人工智能网络协议
基于OpenMV的智能车牌识别系统:从硬件到算法的完整实现前言本文将详细介绍一个基于OpenMV微控制器的智能车牌识别系统的设计与实现。该系统集成了嵌入式视觉处理、串口通信协议、深度学习OCR识别等多种技术,实现了从图像采集到车牌识别的完整流程。系统架构概述整体设计思路该车牌识别系统采用分布式架构设计,将计算密集型任务与嵌入式控制分离:┌─────────────┐USB串口通信┌────────
- 爆改YOLOv8 | 利用AFPN增加小目标检测层(替换小目标检测头)
1,本文介绍这篇文章的改进机制是利用新推出的渐近特征金字塔网络(AFPN)来优化yolov8的检测头,AFPN的核心是引入一种渐近的特征融合策略,将底层和高层的特征逐渐整合到目标检测过程中。这种方式有助于减小不同层次特征之间的语义差距,提高特征融合效果,使得检测模型能更好地适应不同层次的语义信息。关于AFPN的详细介绍可以看论文:https://arxiv.org/pdf/2306.15988.p
- 语音识别开源项目推荐:GitHub热门仓库盘点
AGI大模型与大数据研究院
AI大模型应用开发实战语音识别开源githubai
2024年必看!GitHub热门语音识别开源项目全解析:从入门到实战关键词语音识别(ASR)、开源项目、GitHub、Whisper、FunASR、PaddleSpeech、深度学习摘要想象一下:开车时只需说一句话就能自动发消息,听英文演讲时实时获得中文翻译,给视障人士读文本时精准转换——这些场景的背后,语音识别(AutomaticSpeechRecognition,ASR)技术正在改变我们与机器
- 初识opencv
文章目录1.什么opencv,它的优势点2.opencv安装和环境配置3.了解数字图像的基本概念:像素、彩色图像、灰度图像、二值图像、图像算数操作4.练习numpy中array的基本操作5.练习图像的加载、保存、以及算术操作参考文献1.什么opencv,它的优势点OpenCV是Intel®开源计算机视觉库。它由一系列C函数和少量C++类构成,实现了图像处理和计算机视觉方面的很多通用算法。OpenC
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- YOLO目标检测模型优化技术全景解析
YOLO目标检测模型优化技术全景解析作为实时目标检测领域的标杆算法,YOLO系列模型通过持续的技术革新不断提升性能边界。本文将从模型架构设计、数据优化、注意力机制融合、后处理策略及训练方法等维度,系统剖析YOLO优化领域的关键技术与最新进展。一、模型架构优化:突破性能瓶颈的核心路径多尺度检测层增强针对小目标检测难题,主流方案通过增加浅层检测通道优化特征提取。例如在YOLOv5中引入160×160特
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- 《自动驾驶汽车致损的民事侵权责任》(三)
刘东利2020
由此,回到道路交通责任的框架下:由于绝大多数交通事故都源于驾驶员的某种程度上的过错,因而驾驶过失是驾驶员承担机动车道路交通事故损害赔偿责任的责任基础。虽然从原则上看这是成立的,但是却没有照顾到以下两个方面对于该原则的突破。这是在人类驾驶汽车,也就是L0-L2阶段仍然试用的原则。具体到事故场景,又分为:一是,关于机动车驾驶员的责任原则,立法例中存在从过错责任到无过错责任的各种变化。我国《道路交通安全
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- Python --- day 10 Opencv模块的使用
AnAn__kang
pythonopencv开发语言
系列文章目录前言今天博主带大家进入Opencv的学习,这是一个专门针对处理图像和视频的一个模块,大家以理解为主,增强自己的编程思维,再后续我们训练模型时会大批量的处理图片时会经常用到这个模块。1OpenCV介绍OpenCV(开放源代码计算机视觉库)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成,用于图像处理、计算机视觉领域的算法实现。1.1OpenCV优势**开源免费:**完全
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 车辆云端威胁情报共享系统的多维解析与发展路径
百态老人
大数据人工智能
第一部分:内容本质提取原始内容描述了一个闭环网络安全体系:“车辆实时上传异常行为日志至安全运营中心(VSOC),云端通过机器学习分析攻击模式并下发全局防御策略”。其核心架构包含:数据采集层:车辆端持续收集异常行为日志数据,包含CAN总线通信模式、网络流量特征及驾驶行为数据传输层:通过V2X通信协议和OTA更新通道实现车云双向通信分析层:安全运营中心(VSOC)采用CNN-BiSRU等深度学习模型进
- 基于深度学习的语音识别:从音频信号到文本转录
Blossom.118
机器学习与人工智能深度学习语音识别音视频人工智能机器学习线性代数计算机视觉
前言语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域中一个极具挑战性和应用前景的研究方向。它通过将语音信号转换为文本,为人们提供了更加自然和便捷的人机交互方式。近年来,深度学习技术在语音识别领域取得了显著进展,极大地提高了语音识别的准确率和鲁棒性。本文将详细介绍如何使用深度学习技术构建一个语音识别系统,从音频信号的预处理到模型的训练与部署。一、语音识别的基本概
- 数字人系统:AI界的超级巨星,你准备好了吗?
优秘智能UMI
数字人人工智能深度学习计算机视觉机器学习自然语言处理语言模型图像处理
在这个日新月异的科技时代,每一个创新的火花都可能点燃一场变革的燎原之火。今天,我们要聊的,正是那颗在AI领域熠熠生辉的璀璨新星——优秘数字人系统。它不仅仅是技术的飞跃,更是对未来生活方式的深刻重塑,一场关于人机交互、智能共生的美好预演。技术原理:深度解析与智能构建的奥秘1.深度学习:智能的基石数字人系统的核心技术之一在于深度学习。深度学习是一种模仿人脑神经网络结构和功能的机器学习技术,通过构建多层
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- 格灵深瞳视觉算法面试30问全景精解
机 _ 长
算法面试职场和发展
格灵深瞳视觉算法面试30问全景精解——AI感知×智能安防×场景创新:格灵深瞳视觉算法面试核心考点全览前言格灵深瞳(GREATVISION)作为国内领先的人工智能与计算机视觉企业,专注于智慧安防、智能交通、智慧零售等领域,推动视觉算法在大规模城市级场景的落地。格灵深瞳视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在复杂场景下的创新能力与工程实践。本文精选30个高质量面试问题,涵盖基
- 商汤科技视觉算法面试30问全景精解
商汤科技视觉算法面试30问全景精解——AI赋能×智能视觉×产业创新:商汤科技视觉算法面试核心考点全览前言商汤科技(SenseTime)作为全球领先的人工智能平台公司,专注于计算机视觉、深度学习和智慧城市、智能汽车、智能医疗等领域,推动人脸识别、目标检测、视频分析、自动驾驶等前沿技术的产业化落地。商汤视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、自动驾驶、智慧医疗等复
- 旷视科技视觉算法面试30问全景精解
机 _ 长
科技算法面试深度学习YOLO
旷视科技视觉算法面试30问全景精解——AI赋能×智能安防×视觉创新:旷视科技视觉算法面试核心考点全览前言旷视科技(Megvii)作为全球领先的人工智能公司,专注于计算机视觉、深度学习和智能安防等领域,推动人脸识别、目标检测、视频分析、工业视觉等前沿技术的产业化落地。旷视视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在大规模安防、工业检测、智慧城市等复杂场景下的创新与工程能力。本文
- 蔚来汽车视觉算法面试30问全景精解
蔚来汽车视觉算法面试30问全景精解——智能电动×高阶辅助驾驶×视觉创新:蔚来汽车视觉算法面试核心考点全览前言蔚来汽车作为全球领先的智能电动汽车品牌,致力于通过AI与高阶辅助驾驶技术推动智能出行的未来。蔚来视觉算法团队专注于自动驾驶感知、智能座舱、车路协同、3D重建等领域,强调算法的工程落地、系统安全与创新突破。蔚来视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在自动驾驶、智能感知
- GPT-3 面试题
简介1、GPT-3是什么?它是基于什么模型的?GPT-3是一种基于深度学习原理的语言预测模型。它是由OpenAI开发的,可以从互联网数据中生成任何类型的文本。它只需要一小段文本作为输入,就可以生成大量的准确和复杂的机器生成文本²⁴。GPT-3是基于Transformer模型的,使用了仅有解码器的自回归架构。它使用下一个单词预测目标进行训练¹²。GPT-3有8个不同的模型,参数从1.25亿到1750
- 数据标注管理工具:AI燃料工厂的精益引擎
花海如潮淹
人工智能经验分享笔记
标注团队的三重灾难链1.质量波动的死亡螺旋某自动驾驶公司因漏标3%的障碍物边缘,导致感知模型误判引发事故(IEEE2024案例)。质检员发现标注员A的错误率超行业标准5倍,但传统抽检仅覆盖8%数据量(ScaleAI白皮书)。2.任务调度的纳什困境某医疗影像标注项目,肝脏分割任务积压2周,而简单分类任务空闲率达37%(Labelbox调度报告)。标注员平均28%时间浪费在任务切换(Appen生产力研
- 网络爬虫再深入——对抗指纹检测、分布式架构与智能解析实战
rooney2024
爬虫
目录一、深入反爬:浏览器指纹检测与对抗(配图1)1.高级指纹检测原理2.对抗方案与实战二、分布式爬虫架构深度设计(配图2)1.容错与弹性设计2.智能限流算法三、智能解析:LLM与计算机视觉的融合(配图3)1.LLM解析非结构化文本2.视觉辅助定位元素四、法律与伦理:爬虫工程师的自我修养1.关键法律边界2.道德实践框架五、未来战场:Web3.0时代的爬虫技术演进1.去中心化网络挑战2.AI驱动的自适
- 精通 triton 使用 MLIR 的源码逻辑 - 第001节:triton 的应用简介
项目使用到MLIR,通过了解triton对MLIR的使用,体会到MLIR在较大项目中的使用方式,汇总一下。1.Triton概述OpenAITriton是一个开源的编程语言和编译器,旨在简化GPU高性能计算(HPC)的开发,特别是针对深度学习、科学计算等需要高效并行计算的领域。既允许开发者编写高度优化的代码,又不必过度关注底层硬件细节。这样,通过简化高性能计算,可以加速新算法的实现和实验。传统GPU
- ai绘画生成软件哪个好?几款好用的AI绘画软件分享!
呼酱小宝箱
随着人工智能技术的不断发展,越来越多的AI绘画生成软件被开发出来。这些软件利用深度学习技术,可以将普通照片或图像转化成具备艺术效果的画作。那么,ai绘画生成软件哪个好?首先,让我们来看一下几个常见的AI绘画生成软件,它们分别是:1、DeepDreamDeepDream是由Google开发的一款AI绘画生成软件。它通过卷积神经网络对输入的图片进行处理,从而生成出具有艺术风格的画作。DeepDream
- 计算机视觉:人工智能的“眼睛”
人工智能教程
人工智能计算机视觉机器学习算法pytorchpython数据结构
前言在人工智能的众多领域中,计算机视觉(ComputerVision)无疑是其中最为引人注目的方向之一。它赋予了机器“看”的能力,使计算机能够像人类一样理解和解释视觉信息。从自动驾驶汽车到医疗影像诊断,从安防监控到虚拟现实,计算机视觉的应用场景无处不在,深刻地改变着我们的生活和工作方式。本文将深入探讨计算机视觉的核心技术、应用场景以及未来的发展趋势,帮助您全面了解这一充满活力的领域。一、计算机视觉
- 计算机视觉:打开机器之眼看世界
LeafyJee_
人工智能人工智能深度学习计算机视觉
计算机视觉是人工智能领域中备受关注的一部分,它的目标是赋予计算机类似于人类眼睛的功能,让机器能够感知和理解周围的世界。通过图像和视频数据,计算机视觉技术将信息转化为可理解和可操作的数据,为各种应用领域提供了强大的支持。一、计算机视觉的起源和发展计算机视觉起源于20世纪50年代,当时科学家们开始研究如何让计算机能够识别和理解图像。随着技术的不断进步,计算机视觉逐渐发展成为一门独立的学科,并广泛应用于
- 如何使用 OpenCV 打开指定摄像头
在计算机视觉应用中,经常需要从特定的摄像头设备获取视频流。例如,在多摄像头环境中,当使用OpenCV的cv::VideoCapture类打开摄像头时,如果不指定摄像头的ID,可能会随机打开系统中的某个摄像头,或者按照设备连接的顺序打开第一个可用的摄像头。比如: //打开两个摄像头 cv::VideoCapture cap0(0); if (!cap0.isOpened()){ c
- DeepSeek部署指南:从入门到精通
wujj_whut
热门应用c++DeepSeek嵌入式实时数据库
DeepSeek部署指南:从入门到精通引言在人工智能和深度学习领域,模型的部署是一个至关重要的环节。DeepSeek作为一款强大的深度学习框架,其部署过程不仅关系到模型的性能表现,还直接影响到实际应用的效果。本文将详细介绍DeepSeek的部署流程,涵盖从环境配置到实际应用的各个方面,旨在帮助读者全面掌握DeepSeek的部署技巧。一、DeepSeek简介DeepSeek是一款开源的深度学习框架,
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出