目录
1. 编程实现图6-1,并观察特征
2. 观察梯度方向
3. 编写代码实现算法,并可视化轨迹
4. 分析上图,说明原理
1、为什么SGD会走“之字形”?其它算法为什么会比较平滑?
2、Momentum、AdaGrad对SGD的改进体现在哪里?速度?方向?在图上有哪些体现?
3、仅从轨迹来看,Adam似乎不如AdaGrad效果好,是这样么?
4、四种方法分别用了多长时间?是否符合预期?
5、调整学习率、动量等超参数,轨迹有哪些变化?
5. 总结SGD、Momentum、AdaGrad、Adam的优缺点
6. Adam这么好,SGD是不是就用不到了?
7. 增加RMSprop、Nesterov算法。
8. 基于MNIST数据集的更新方法的比较
总结
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def func(x, y):
return x * x / 20 + y * y
def paint_loss_func():
x = np.linspace(-50, 50, 100) # x的绘制范围是-50到50,从改区间均匀取100个数
y = np.linspace(-50, 50, 100) # y的绘制范围是-50到50,从改区间均匀取100个数
X, Y = np.meshgrid(x, y)
Z = func(X, Y)
fig = plt.figure() # figsize=(10, 10))
ax = Axes3D(fig)
plt.xlabel('x')
plt.ylabel('y')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()
paint_loss_func()
这个函数最底下是一条弧线,所以有全局最小值。
由于函数底部的那条弧线弧度很小,所以梯度下降方向基本是沿着y轴方向,x轴方向只占很小一部分,很多地方都梯度也没有指向(0,0)处。
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
class SGD:
"""随机梯度下降法(Stochastic Gradient Descent)"""
def __init__(self, lr=0.01):
self.lr = lr
def update(self, params, grads):
for key in params.keys():
params[key] -= self.lr * grads[key]
class Momentum:
"""Momentum SGD"""
def __init__(self, lr=0.01, momentum=0.9):
self.lr = lr
self.momentum = momentum
self.v = None
def update(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)
for key in params.keys():
self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
params[key] += self.v[key]
class Nesterov:
"""Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""
def __init__(self, lr=0.01, momentum=0.9):
self.lr = lr
self.momentum = momentum
self.v = None
def update(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)
for key in params.keys():
self.v[key] *= self.momentum
self.v[key] -= self.lr * grads[key]
params[key] += self.momentum * self.momentum * self.v[key]
params[key] -= (1 + self.momentum) * self.lr * grads[key]
class AdaGrad:
"""AdaGrad"""
def __init__(self, lr=0.01):
self.lr = lr
self.h = None
def update(self, params, grads):
if self.h is None:
self.h = {}
for key, val in params.items():
self.h[key] = np.zeros_like(val)
for key in params.keys():
self.h[key] += grads[key] * grads[key]
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
class RMSprop:
"""RMSprop"""
def __init__(self, lr=0.01, decay_rate=0.99):
self.lr = lr
self.decay_rate = decay_rate
self.h = None
def update(self, params, grads):
if self.h is None:
self.h = {}
for key, val in params.items():
self.h[key] = np.zeros_like(val)
for key in params.keys():
self.h[key] *= self.decay_rate
self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
class Adam:
"""Adam (http://arxiv.org/abs/1412.6980v8)"""
def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.iter = 0
self.m = None
self.v = None
def update(self, params, grads):
if self.m is None:
self.m, self.v = {}, {}
for key, val in params.items():
self.m[key] = np.zeros_like(val)
self.v[key] = np.zeros_like(val)
self.iter += 1
lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)
for key in params.keys():
self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])
params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
def f(x, y):
return x ** 2 / 20.0 + y ** 2
def df(x, y):
return x / 10.0, 2.0 * y
init_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0
optimizers = OrderedDict()
optimizers["SGD"] = SGD(lr=0.95)
optimizers["Momentum"] = Momentum(lr=0.1)
optimizers["AdaGrad"] = AdaGrad(lr=1.5)
optimizers["Adam"] = Adam(lr=0.3)
idx = 1
for key in optimizers:
optimizer = optimizers[key]
x_history = []
y_history = []
params['x'], params['y'] = init_pos[0], init_pos[1]
for i in range(30):
x_history.append(params['x'])
y_history.append(params['y'])
grads['x'], grads['y'] = df(params['x'], params['y'])
optimizer.update(params, grads)
x = np.arange(-10, 10, 0.01)
y = np.arange(-5, 5, 0.01)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
# for simple contour line
mask = Z > 7
Z[mask] = 0
# plot
plt.subplot(2, 2, idx)
idx += 1
plt.plot(x_history, y_history, 'o-', color="red")
plt.contour(X, Y, Z) # 绘制等高线
plt.ylim(-10, 10)
plt.xlim(-10, 10)
plt.plot(0, 0, '+')
plt.title(key)
plt.xlabel("x")
plt.ylabel("y")
plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距
plt.show()
根据使用的方法不同,参数更新的路径也不同。只看这个图的话,AdaGrad似乎是最好的,不过也要注意,结果会根据要解决的问题而变。并且,很显然,超参数(学习率等)的设定值不同,结果也会发生变化。
那么用哪种方法好呢?非常遗憾,(目前)并不存在能在所有问题中都表现良好的方法。这4种方法各有各的特点,都有各自擅长解决的问题和不擅长解决的问题。 很多研究中至今仍在使用SGD。Momentum和AdaGrad也是值得一试的方法。最近,很多研究人员和技术人员都喜欢用Adam。
SGD呈“之”字形移动。这是一个相当低效的路径。也就是说, SGD的缺点是,如果函数的形状非均向(anisotropic),比如呈延伸状,搜索 的路径就会非常低效。因此,我们需要比单纯朝梯度方向前进的SGD更聪 明的方法。SGD低效的根本原因是,梯度的方向并没有指向最小值的方向。
Momentum是“动量”的意思,和物理有关。用数学式表示Momentum方 法,如下所示。
和前面的SGD一样,W表示要更新的权重参数, 表示损失函数关 于W的梯度,η表示学习率。这里新出现了一个变量v,对应物理上的速度。 式(6.3)表示了物体在梯度方向上受力,在这个力的作用下,物体的速度增 加这一物理法则。如图6-4所示,Momentum方法给人的感觉就像是小球在 地面上滚动。
上图中,更新路径就像小球在碗中滚动一样。和SGD相比,我们发现 “之”字形的“程度”减轻了。这是因为虽然x轴方向上受到的力非常小,但是一直在同一方向上受力,所以朝同一个方向会有一定的加速。反过来,虽然y轴方向上受到的力很大,但是因为交互地受到正方向和反方向的力,它们会互相抵消,所以y轴方向上的速度不稳定。因此,和SGD时的情形相比,可以更快地朝x轴方向靠近,减弱“之”字形的变动程度。
AdaGrad会为参数的每个元素适当地调整学习率,与此同时进行学习 (AdaGrad的Ada来自英文单词Adaptive,即“适当的”的意思)。下面,让我们用数学式表示AdaGrad的更新方法。
和前面的SGD一样,W表示要更新的权重参数, 表示损失函数关于W的梯度,η表示学习率。这里新出现了变量h,如式(6.5)所示,它保存了以前的所有梯度值的平方和。 然后,在更新参数时,通过乘以 ,就可以调整学习的尺度。这意味着,参数的元素中变动较大(被大幅更新)的元素的学习率将变小。也就是说,可以按参数的元素进行学习率衰减,使变动大的参数的学习率逐渐减小。
由上图的结果可知,函数的取值高效地向着最小值移动。由于y轴方 向上的梯度较大,因此刚开始变动较大,但是后面会根据这个较大的变动按 比例进行调整,减小更新的步伐。因此,y轴方向上的更新程度被减弱,“之” 字形的变动程度有所衰减。
从轨迹来看,好像是这样,主要有以下两点原因:
1、Adam可能不收敛
AdaGrad的二阶动量不断累积,单调递增,因此学习率是单调递减的。因此,这会使得学习率不断递减,最终收敛到0,模型也得以收敛。
但Adam则不然。二阶动量是固定时间窗口内的累积,随着时间窗口的变化,遇到的数据可能发生巨变,使得可能会时大时小,不是单调变化。这就可能在训练后期引起学习率的震荡,导致模型无法收敛。
2、Adam可能错过全局最优解
深度神经网络往往包含大量的参数,在这样一个维度极高的空间内,非凸的目标函数往往起起伏伏,拥有无数个高地和洼地。有的是高峰,通过引入动量可能很容易越过;但有些是高原,可能探索很多次都出不来,于是停止了训练。
从上往下依次是SGD,Momentum,AdaGrad,Adam的运行时间
可以看出,Adam因其算法复杂度而运行时间最长,其他三种算法时间差不多。
lr=0.01时:
lr太小,30次根本不够搜索的,改为1000次
这次Momentum找到了最小点,Adam马上找到,而其他两种算法还差得多
lr=0.1,搜索1000次
只有AdaGrad没有找到最小点
lr=1,搜索1000次
lr=100,搜索100次
可以发现,SGD和Momentum很容易错过全局最小值,Adam需要较长的时间和较多的搜索次数来找到全局最小值,AdaGrad效果最好。
SGD:
选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了。
SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点
Momentum:
下降初期时,使用上一次参数更新,下降方向一致,乘上较大的能够进行很好的加速
下降中后期时,在局部最小值来回震荡的时候,, 使得更新幅度增大,跳出陷阱
在梯度改变方向的时候,能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛
Adagrad :
前期较小的时候, regularizer较大,能够放大梯度
后期较大的时候,regularizer较小,能够约束梯度
适合处理稀疏梯度
由公式可以看出,仍依赖于人工设置一个全局学习率
设置过大的话,会使regularizer过于敏感,对梯度的调节太大
中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束
Adam:
结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
对内存需求较小
为不同的参数计算不同的自适应学习率
也适用于大多非凸优化 - 适用于大数据集和高维空间
参考:Adam那么棒,为什么还对SGD念念不忘 (2)—— Adam的两宗罪_gukedream的博客-CSDN博客
先来看SGD。SGD没有动量的概念,也就是说:
代入
计算当前时刻的下降梯度:
可以看到下降梯度就是最简单的
SGD最大的缺点是下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。
SGD没有用到二阶动量,因此学习率是恒定的(实际使用过程中会采用学习率衰减策略,因此学习率递减)。AdaGrad的二阶动量不断累积,单调递增,因此学习率是单调递减的。因此,这两类算法会使得学习率不断递减,最终收敛到0,模型也得以收敛。
但AdaDelta和Adam则不然。二阶动量是固定时间窗口内的累积,随着时间窗口的变化,遇到的数据可能发生巨变,使得 可能会时大时小,不是单调变化。这就可能在训练后期引起学习率的震荡,导致模型无法收敛。
Adam很可能错过全局最优解
深度神经网络往往包含大量的参数,在这样一个维度极高的空间内,非凸的目标函数往往起起伏伏,拥有无数个高地和洼地。有的是高峰,通过引入动量可能很容易越过;但有些是高原,可能探索很多次都出不来,于是停止了训练。
近期Arxiv上的两篇文章谈到这个问题。
第一篇就是前文提到的吐槽Adam最狠的 The Marginal Value of Adaptive Gradient Methods in Machine Learning 。文中说到,同样的一个优化问题,不同的优化算法可能会找到不同的答案,但自适应学习率的算法往往找到非常差的答案。他们通过一个特定的数据例子说明,自适应学习率算法可能会对前期出现的特征过拟合,后期才出现的特征很难纠正前期的拟合效果。
另外一篇是 Improving Generalization Performance by Switching from Adam to SGD,进行了实验验证。他们CIFAR-10数据集上进行测试,Adam的收敛速度比SGD要快,但最终收敛的结果并没有SGD好。他们进一步实验发现,主要是后期Adam的学习率太低,影响了有效的收敛。他们试着对Adam的学习率的下界进行控制,发现效果好了很多。
于是他们提出了一个用来改进Adam的方法:前期用Adam,享受Adam快速收敛的优势;后期切换到SGD,慢慢寻找最优解。这一方法以前也被研究者们用到,不过主要是根据经验来选择切换的时机和切换后的学习率。这篇文章把这一切换过程傻瓜化,给出了切换SGD的时机选择方法,以及学习率的计算方法,效果看起来也不错。
所以,谈到现在,到底Adam好还是SGD好?这可能是很难一句话说清楚的事情。去看学术会议中的各种paper,用SGD的很多,Adam的也不少,还有很多偏爱AdaGrad或者AdaDelta。可能研究员把每个算法都试了一遍,哪个出来的效果好就用哪个了。
而从这几篇怒怼Adam的paper来看,多数都构造了一些比较极端的例子来演示了Adam失效的可能性。这些例子一般过于极端,实际情况中可能未必会这样,但这提醒了我们,理解数据对于设计算法的必要性。优化算法的演变历史,都是基于对数据的某种假设而进行的优化,那么某种算法是否有效,就要看你的数据是否符合该算法的胃口了。
另一方面,Adam之流虽然说已经简化了调参,但是并没有一劳永逸地解决问题,默认参数虽然好,但也不是放之四海而皆准。因此,在充分理解数据的基础上,依然需要根据数据特性、算法特性进行充分的调参实验,找到自己炼丹的最优解。而这个时候,不论是Adam,还是SGD,于你都不重要了。
optimizers['RMSprop']=RMSprop(lr=0.2)
optimizers['Nesterov']=Nesterov(lr=0.1)
对比Momentum与Nesterov
两个算法都是动量优化法,Nesterov项是momentum的改进,在梯度更新时做一个校正,让之前的动量直接影响当前的动量,避免前进太快,同时提高灵敏度。
对比AdaGrad与RMSprop
两个都是自适应学习率优化法,RMSprop解决了对历史梯度一直累加而导致学习率一直下降的问题,适合处理非平稳目标,对于RNN效果很好,但RMSprop依然依赖于手动选择全局学习率。
# coding: utf-8
import os
import sys
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from common.util import smooth_curve
from common.multi_layer_net import MultiLayerNet
from common.optimizer import *
# 0:读入MNIST数据==========
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)
train_size = x_train.shape[0]
batch_size = 128
max_iterations = 2000
# 1:进行实验的设置==========
optimizers = {}
optimizers['SGD'] = SGD()
optimizers['Momentum'] = Momentum()
optimizers['AdaGrad'] = AdaGrad()
optimizers['Adam'] = Adam()
#optimizers['RMSprop'] = RMSprop()
networks = {}
train_loss = {}
for key in optimizers.keys():
networks[key] = MultiLayerNet(
input_size=784, hidden_size_list=[100, 100, 100, 100],
output_size=10)
train_loss[key] = []
# 2:开始训练==========
for i in range(max_iterations):
batch_mask = np.random.choice(train_size, batch_size)
x_batch = x_train[batch_mask]
t_batch = t_train[batch_mask]
for key in optimizers.keys():
grads = networks[key].gradient(x_batch, t_batch)
optimizers[key].update(networks[key].params, grads)
loss = networks[key].loss(x_batch, t_batch)
train_loss[key].append(loss)
if i % 100 == 0:
print( "===========" + "iteration:" + str(i) + "===========")
for key in optimizers.keys():
loss = networks[key].loss(x_batch, t_batch)
print(key + ":" + str(loss))
# 3.绘制图形==========
markers = {"SGD": "o", "Momentum": "x", "AdaGrad": "s", "Adam": "D"}
x = np.arange(max_iterations)
for key in optimizers.keys():
plt.plot(x, smooth_curve(train_loss[key]), marker=markers[key], markevery=100, label=key)
plt.xlabel("iterations")
plt.ylabel("loss")
plt.ylim(0, 1)
plt.legend()
plt.show()
从结果中可知,与SGD相比,其他3种方法学习得更快,而且速度基本相同,仔细看的话,AdaGrad的学习进行得稍微快一点。这个实验需要注意的地方是,实验结果会随学习率等超参数、神经网络的结构(几层深等)的不同而发生变化。不过,一般而言,与SGD相比,其他3种方法可 以学习得更快,有时最终的识别精度也更高。
因为这部分内容在鱼书中是在RNN之前,所以在学RNN之前就读过了,就对参数更新优化算法有了一定了解,再加上上学期学的最优化方法,这次上课的内容对我来说就不是很难。