spring提供了 RedisConnectionFactory
RedisConnectionFactory : 生成 RedisConnection接口对象
RedisConnection : 是redis底层接口的封装,,,比如RedisConnection
的实现类JedisConnection
去封装原有的Jedis
导包:
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
<exclusions>
<exclusion>
<groupId>io.lettucegroupId>
<artifactId>io.lettuce:lettuce-core:5.3.5.RELEASEartifactId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>redis.clientsgroupId>
<artifactId>jedisartifactId>
dependency>
创建自己的RedisConnectionFactory
@Bean
public RedisConnectionFactory initRedisConnectionFactory(){
JedisPoolConfig poolConfig = new JedisPoolConfig();
// 最大空闲数
poolConfig.setMaxIdle(30);
// 最大连接数
poolConfig.setMaxTotal(50);
// 最大等待毫秒数
poolConfig.setMaxWaitMillis(2000);
// 创建jedis连接工厂
JedisConnectionFactory connectionFactory = new JedisConnectionFactory(poolConfig);
// 获取redis单机配置
RedisStandaloneConfiguration redisConfig = connectionFactory.getStandaloneConfiguration();
connectionFactory.setHostName("114.132.51.96");
connectionFactory.setPassword("123");
connectionFactory.setPort( 6379);
return connectionFactory;
}
在使用一个连接的时候,,要先从RedisConnectionFactory
中获取连接,,,在使用完成之后,,关闭它。。
spring为了简化开发,提供了RedisTemplate
spring提供 RedisSerializer接口,,他有两个方法serialize
,deserialize
默认使用JdkSerializationRedisSerializer 对对象进行序列化和反序列化
创建自己的RedisTemplate
// springboot 会默认注册 名为 redisTemplate 和 stringRedisTemplate的bean...这个name要覆盖redisTemplate
@Bean(name = "redisTemplate")
public RedisTemplate<Object,Object> initRedisTemplate(){
RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>();
// RedisTemplate自动初始化StringRedisSerializer
RedisSerializer<String> stringSerializer = redisTemplate.getStringSerializer();
redisTemplate.setKeySerializer(stringSerializer);
redisTemplate.setHashKeySerializer(stringSerializer);
redisTemplate.setHashValueSerializer(stringSerializer);
// 设置连接工厂
redisTemplate.setConnectionFactory(redisConnectionFactory);
return redisTemplate;
}
springboot中自己会注册 名字为 redisTemplate,和 stringRedisTemplate的bean
如果需要连续操作一个 散列数据类型 或者 列表 多次,,可以使用BoundXXXOperations
接口
多个操作并不是在同一个redis连接下完成的,,有时候我们更加希望是在同一个连接中执行两个命令,,为了克服这个问题,spring提供了SessionCallback 和 RedisCallback
SessionCallback 和 RedisCallback 作用: 让RedisTemplate进行回调,,在同一条连接下执行多个redis命令
public void useRedisCallback(RedisTemplate redisTemplate){
redisTemplate.execute(new RedisCallback() {
@Override
public Object doInRedis(RedisConnection connection) throws DataAccessException {
connection.set("key1".getBytes(),"value1".getBytes());
return null;
}
});
}
public void useSessionCallback(RedisTemplate redisTemplate){
redisTemplate.execute(new SessionCallback() {
@Override
public Object execute(RedisOperations operations) throws DataAccessException {
operations.opsForValue().set("hehe","11");
System.out.println(operations.opsForValue().get("hehe"));
return null;
}
});
}
导包:
<dependency>
<groupId>redis.clientsgroupId>
<artifactId>jedisartifactId>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
<exclusions>
<exclusion>
<groupId>io.lettucegroupId>
<artifactId>lettuce-coreartifactId>
exclusion>
exclusions>
dependency>
获取原生连接:
// 获取底层连接
Jedis jedis = (Jedis) stringRedisTemplate.getConnectionFactory().getConnection().getNativeConnection();
jedis.decr("num");
hash
HashMap<String, String> map = new HashMap<>();
map.put("field1", "value1");
map.put("field2", "value2");
// 存入一个散列
stringRedisTemplate.opsForHash().putAll("hash", map);
// 给hash新增一个字段
stringRedisTemplate.opsForHash().put("hash", "username", "cc");
// 批量操作hash
BoundHashOperations<String, Object, Object> hashOps = stringRedisTemplate.boundHashOps("hash");
// 删除两个字段
hashOps.delete("field1", "field2");
// 删除一个字段
hashOps.put("age", "18");
list
stringRedisTemplate.opsForList().leftPushAll("list1", "v2", "v3", "v4", "v5");
stringRedisTemplate.opsForList().rightPushAll("list2", "v1", "v2", "v3", "v4");
BoundListOperations<String, String> listOps = stringRedisTemplate.boundListOps("list2");
// 右边弹出一个
String result1 = listOps.rightPop();
System.out.println("result1 = " + result1);
// 获取第几个元素,,,下标从0 开始计算
String result2 = listOps.index(1);
System.out.println("result2 = " + result2);
listOps.leftPush("sb");
// 链表长度
Long size = listOps.size();
// 取范围
List<String> range = listOps.range(0, 1);
System.out.println("range = " + range);
set
stringRedisTemplate.opsForSet().add("set1", "v1", "v2", "v3");
stringRedisTemplate.opsForSet().add("set2", "v1", "v2", "v3");
BoundSetOperations<String, String> setOps = stringRedisTemplate.boundSetOps("set1");
setOps.add("v4", "v5");
setOps.remove("v1", "v2");
// 返回所有set
Set<String> members = setOps.members();
System.out.println("members = " + members);
// set 大小
Long size = setOps.size();
System.out.println("size = " + size);
Set<String> intersect = setOps.intersect("set2");
System.out.println("intersect = " + intersect);
// 求交集,,并用新集合 inter 保存
setOps.intersectAndStore("set2", "inter");
Set<String> diff = setOps.diff("set2");
System.out.println("diff = " + diff);
setOps.diffAndStore("set2", "diff");
Set<String> union = setOps.union("set2");
setOps.unionAndStore("set2", "union");
zset
HashSet<ZSetOperations.TypedTuple<String>> typedTupleSet = new HashSet<>();
for (int i = 1; i < 10; i++) {
double score = i * 0.1;
DefaultTypedTuple<String> typedTuple = new DefaultTypedTuple<>("value" + i, score);
typedTupleSet.add(typedTuple);
}
stringRedisTemplate.opsForZSet().add("zset1", typedTupleSet);
BoundZSetOperations<String, String> zsetOps = stringRedisTemplate.boundZSetOps("zset1");
// 添加一个元素
zsetOps.add("sb", 0.3);
Set<String> range = zsetOps.range(0, 1);
System.out.println("range = " + range);
Set<String> strings = zsetOps.rangeByScore(0.2, 0.4);
System.out.println("strings = " + strings);
// 定义值的范围
RedisZSetCommands.Range zsetRange = new RedisZSetCommands.Range();
zsetRange.gte("value3");
zsetRange.lt("value8");
Set<String> strings1 = zsetOps.rangeByLex(zsetRange);
System.out.println("strings1 = " + strings1);
// 删除元素
Long value8 = zsetOps.remove("value8");
System.out.println("value8 = " + value8);
Double sb = zsetOps.score("sb");
System.out.println("sb = " + sb);
// 在下标区间内,,按分数排序,,返回value和score 。。。传入的是下标区间
Set<ZSetOperations.TypedTuple<String>> typedTuples = zsetOps.rangeWithScores(0, 3);
System.out.println("typedTuples = " + typedTuples);
// 在分数区间下,,按分数排序,, 传入的是分数区间
Set<ZSetOperations.TypedTuple<String>> typedTuples1 = zsetOps.rangeByScoreWithScores(0, 3);
System.out.println("typedTuples1 = " + typedTuples1);
Set<String> strings2 = zsetOps.reverseRange(2, 8);
System.out.println("strings2 = " + strings2);
spring提供了 TypedTuple
接口,
DefaultTypedTuple
spring为我们创建了Range
类,可以定义值的范围,,大于,等于,大于等于,小于等于
在一个连接中执行多个命令,,使用SessionCallback
事务的命令:
List list = (List) stringRedisTemplate.execute(new SessionCallback<Object>() {
@Override
public Object execute(RedisOperations operations) throws DataAccessException {
operations.opsForValue().set("k1", "v1");
// 开启事务
operations.multi();
operations.opsForHash().put("hash", "field1", "value1");
// 返回执行结果
return operations.exec();
}
});
redis事务,是先让命令进入队列,,所以一开始并没有检测这个命令是否执行成功,,只有在exec
执行的时候,才能发现错误,,对于出错的命令,redis只是报错,而错误后面的命令依旧被执行
为了克服这个问题,,我们在执行事务前,,严格的检查数据,以避免这样情况发生
默认情况下,redis是一条条命令发送给服务器的,这样效率不高,,在关系数据库中我们可以使用批量,,也就是只有需要执行sql的时候,才一次性的发送所有的sql去执行
很多情况下不是redis性能不佳,而是网络传输的速度造成瓶颈
long start = System.currentTimeMillis();
List list = (List) stringRedisTemplate.executePipelined(new SessionCallback<Object>() {
@Override
public Object execute(RedisOperations operations) throws DataAccessException {
for (int i = 0; i <= 100000; i++) {
operations.opsForValue().set("pipeline_" + i, "value_" + i);
String value = (String) operations.opsForValue().get("pipeline_" + i);
if (i == 100000) {
System.out.println("命令只是进入队列,值为空" + value);
}
}
return null;
}
});
long end = System.currentTimeMillis();
System.out.println("耗时:"+(end-start));
System.out.println("list = " + list);
注意的问题:
pipeline
,,所有的命令也只是进入队列而没有执行,,返回的值为空publish topic message
或者 redisTemplate.convertAndSend()
@Configuration
public class RedisConfig {
@Autowired
RedisTemplate redisTemplate;
@Autowired
RedisConnectionFactory redisConnectionFactory;
@Autowired
RedisMessageListener redisMessageListener;
@Bean
public ThreadPoolTaskScheduler initTaskScheduler(){
ThreadPoolTaskScheduler taskScheduler = new ThreadPoolTaskScheduler();
taskScheduler.setPoolSize(20);
return taskScheduler;
}
/**
* 定义 redis 监听容器
* @return
*/
@Bean
public RedisMessageListenerContainer initRedisContainer(){
RedisMessageListenerContainer container = new RedisMessageListenerContainer();
// 设置连接工厂
container.setConnectionFactory(redisConnectionFactory);
// 设置运行任务池
container.setTaskExecutor(initTaskScheduler());
// 定义监听渠道
ChannelTopic topic = new ChannelTopic("topic1");
// 使用 监听器 监听 redis这个主题
container.addMessageListener(redisMessageListener,topic);
return container;
}
}
stringRedisTemplate.convertAndSend("topic1","hehe");
redis两种运行lua方法:
spring提供了 RedisScript
…DefaultRedisScript
DefaultRedisScript<String> redisScript = new DefaultRedisScript<>();
redisScript.setScriptText("return 'hello world'");
redisScript.setResultType(String.class);
RedisSerializer stringSerializer = redisTemplate.getStringSerializer();
String s = (String) redisTemplate.execute(redisScript, stringSerializer, stringSerializer, null);
System.out.println("s = " + s);
redis.call("set",KEYS[1],ARGV[1])
redis.call("set",KEYS[2],ARGV[2])
local str1 = redis.call("get",KEYS[1])
local str2 = redis.call("get",KEYS[2])
if str2==str1 then
return 1
end
return 0
DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
// redisScript.setScriptText("return 'hello world'");
redisScript.setLocation(new ClassPathResource("1.lua"));
redisScript.setResultType(Long.class);
RedisSerializer stringSerializer = redisTemplate.getStringSerializer();
Long result = (Long) redisTemplate.execute(redisScript, stringSerializer, stringSerializer, Arrays.asList("k1","k2"),"hehe1","hehe");
System.out.println("s = " + result);
java会把整数当作长整型 Long,,所以返回值设置为Long
spring支持多种缓存,,存在多种缓存处理器,提供了缓存处理器接口CacheManager
和与之相关的类
RedisCacheManager
启用缓存@EnableCaching
spring.cache.type=redis
spring.cache.cache-name=redisCache
@Cacheable() : 先从缓存里面找,,找到返回,找不到执行
@CachePut() : 将返回结果放在缓存中
@CacheEvict() : 移除缓存,,
condition
:设置条件
beforeInvocation
配置在方法执行之前 移除 还是之后
#result
#a[1]
@Service
public class UserServiceImpl implements UserService {
@Autowired
UserMapper userMapper;
@Override
// @Transactional
// 使用缓存,,,如果没有,,存入
@Cacheable(value = "redisCache",key = "'redis_key_'+#id")
public User getUserById(Long id) {
return userMapper.getUserById(id);
}
@Override
// 将返回的结果,,放入缓存中
@CachePut(value = "redisCache",key = "'redis_key_'+#result.id")
public User insertUser(User user) {
// 返回row ,,,但是会将自增id填进去
userMapper.insertUser(user);
return user;
}
@Override
@CachePut(value = "redisCache",condition = "#result !=null",key = "'redis_key_'+#id")
public User updateUserName(Long id, String userName) {
// 这里的缓存@Cacheable失效,,会执行sql,,
User user = this.getUserById(id);
if (user == null){
return null;
}
user.setUsername(userName);
userMapper.updateUser(user);
return user;
}
// 命中率低,,不采用缓存
@Override
public List<User> findUsers(String userName, String address) {
return userMapper.findUsers(userName,address);
}
@Override
// beforeInvocation : 执行之前
@CacheEvict(value = "redisCache",key = "'redis_key_'+#id",beforeInvocation = false)
public int deleteUser(Long id) {
return userMapper.deleteUser(id);
}
}
自定义缓存器RedisCacheManager
@Bean(name = "redisCacheManager")
public RedisCacheManager initRedisCacheManager(){
// redis 加锁的写入器
RedisCacheWriter writer = RedisCacheWriter.lockingRedisCacheWriter(redisConnectionFactory);
// redis缓存的默认配置
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
// 设置jdk序列化器
config = config.serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(new JdkSerializationRedisSerializer()));
// 禁用前缀
config = config.disableKeyPrefix();
// 设置10min 超时
config = config.entryTtl(Duration.ofMinutes(10));
RedisCacheManager redisCacheManager = new RedisCacheManager(writer, config);
return redisCacheManager;
}