https://github.com/wiselyman/kafka-in-battle
Operator Framework是一个用来管理k8s原生应用(Operator)的开源工具。
Operator Framework支持的Operator分享地址:https://operatorhub.io。
如安装Kafka使用Strimzi Apache Kafka Operator,地址为:https://operatorhub.io/operator/strimzi-kafka-operator 。
打开Strimzi Apache Kafka Operator页面,右侧有install按钮,按照页面提示进行Operator安装。
Operator Lifecycle Manager是Operator Framework的一部分,OLM扩展了k8s提供声明式方法安装、管理、更新Operator以及他们的依赖。
点击页面上的install显示如何安装Strimzi Apache Kafka Operator,我们首先第一步要安装Operator Lifecycle Manager(不要执行下句命令):
curl -sL https://github.com/operator-framework/operator-lifecycle-manager/releases/download/0.12.0/install.sh | bash -s 0.12.0
该命令需要使用quay.io的镜像,我们需采取从源码安装,并修改源码中的镜像地址加速。
源码地址:https://github.com/operator-framework/operator-lifecycle-manager/releases,当前最新版本为0.12.0
。
下载:https://github.com/operator-framework/operator-lifecycle-manager/releases/download/0.12.0/crds.yaml
下载:https://github.com/operator-framework/operator-lifecycle-manager/releases/download/0.12.0/olm.yaml
将olm.yml
中:
quay.io -> quay.azk8s.cn
执行安装:
kubectl apply -f crds.yaml
kubectl apply -f olm.yaml
kubectl create -f https://operatorhub.io/install/strimzi-kafka-operator.yaml
使用下面命令观察Operator启动情况
kubectl get csv -n operators
显示如下则安装成功
wangyunfeis-MacBook-Pro:olm wangyunfei$ kubectl get csv -n operators
NAME DISPLAY VERSION REPLACES PHASE
strimzi-cluster-operator.v0.14.0 Strimzi Apache Kafka Operator 0.14.0 strimzi-cluster-operator.v0.13.0 Succeeded
下载https://raw.githubusercontent.com/strimzi/strimzi-kafka-operator/0.14.0/examples/kafka/kafka-persistent.yaml,主要修改的是所需存储空间为5Gi作为测试条件,这里的存储需要K8s集群中有默认的StorageClass
。
apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
version: 2.3.0
replicas: 3
listeners:
plain: {}
tls: {}
config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
delete.topic.enable: "true"
transaction.state.log.min.isr: 2
log.message.format.version: "2.3"
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 5Gi
deleteClaim: false
zookeeper:
replicas: 3
storage:
type: persistent-claim
size: 5Gi
deleteClaim: false
entityOperator:
topicOperator: {}
userOperator: {}
kubectl apply -f kafka-persistent.yml -n kafka
kubectl exec -i -n kafka my-cluster-kafka-0 -- bin/kafka-console-producer.sh --broker-list my-cluster-kafka-bootstrap:9092 --topic strimizi-my-topic
kubectl exec -i -n kafka my-cluster-kafka-0 -- bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9092 --topic strimizi-my-topic --from-beginning
kubectl exec -n kafka my-cluster-kafka-0 -- bin/kafka-topics.sh --list --zookeeper localhost:2181
本节将外部的SQL Server中的表person(字段只有id
和name
)通过Kafka Connect同步至K8s集群里的PostgreSQL中。
USE bs_portal
EXEC sys.sp_cdc_enable_db;
bs_portal
为数据库名,此时会自动给我们创建cdc的schema和相关表:
captured_columns
change_tables
dbo_person_CT
ddl_history
index_columns
lsn_time_mapping
可使用下面sql语句查询已开启CDC的数据库:
select * from sys.databases where is_cdc_enabled = 1
USE bs_portal
EXEC sys.sp_cdc_enable_table
@source_schema = 'dbo',
@source_name = 'person',
@role_name = 'cdc_admin',
@supports_net_changes = 1;
@source_name
为表名,查询表开启CDS的sql语句:
select name, is_tracked_by_cdc from sys.tables where object_id = OBJECT_ID('dbo.person')
查看新增的job
SELECT job_id,name,enabled,date_created,date_modified FROM msdb.dbo.sysjobs ORDER BY date_created
确定用户有权限访问CDC表
EXEC sys.sp_cdc_help_change_data_capture;
检查安装了SQL Server的操作系统中“服务”中是否开启了“SQL Server 代理”。
关闭数据库的CDC
USE bs_portal
EXEC sys.sp_cdc_disable_db;
关闭表的CDC
USE bs_portal
EXEC sys.sp_cdc_disable_table
@source_schema = 'dbo',
@source_name = 'person',
@capture_instance = 'all';
输入插件(source):下载SQL Server Connector plugin:http://central.maven.org/maven2/io/debezium/debezium-connector-sqlserver/;输出插件(sink):下载Kafka Connect JDBC:https://www.confluent.io/hub/confluentinc/kafka-connect-jdbc。
新建Dockerfile文件,将debezium-connector-sqlserver-0.10.0.Final-plugin.zip
解压放置到Dockerfile相同目录下的plugins
目录;在plugins
目录下新建目录kafka-connect-jdbc
,解压confluentinc-kafka-connect-jdbc-5.3.1.zip
,将lib
下的kafka-connect-jdbc-5.3.1.jar
和postgresql-9.4.1212.jar
放置在kafka-connect-jdbc
。
编写Dockerfile
FROM strimzi/kafka:0.14.0-kafka-2.3.0
USER root:root
COPY ./plugins/ /opt/kafka/plugins/
USER 1001
MAINTAINER [email protected]
使用阿里云“容器镜像服务”(https://cr.console.aliyun.com/)编译镜像,目前我们的源码地址位于:https://github.com/wiselyman/kafka-in-battle。
“镜像仓库”->“创建镜像仓库”:
仓库名称:kafka-connect-form-sql-to-jdbc
仓库类型:公开
下一步后,选择“Github”标签页,使用自己的GitHub库,“构建设置”只勾选“海外机器构建”,然后点击“创建镜像仓库”。
点击镜像仓库列表中的“kafka-connect-mysql-postgres”->“构建”->“添加规则”:
类型:Branch
Branch/Tag:master
Dockerfile目录:/sqlserver-to-jdbc/
Dockfile文件名:Dockerfile
镜像版本:0.1
确认后,“构建规则设置”->“立即构建”,“构建日志”显示“构建状态”为“成功”即可。
编写Kafka Connect集群部署文件kafka-connect-sql-postgres.yml
:
apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
version: 2.3.0
replicas: 1
bootstrapServers: 'my-cluster-kafka-bootstrap:9093'
image: registry.cn-hangzhou.aliyuncs.com/wiselyman/kafka-connect-from-sql-to-jdbc:0.1
tls:
trustedCertificates:
- secretName: my-cluster-cluster-ca-cert
certificate: ca.crt
执行安装
kubectl apply -f kafka-connect-sql-postgres.yml -n kafka
查询已安装的插件
kubectl exec -i -n kafka my-cluster-kafka-0 -- curl -X GET http://my-connect-cluster-connect-api:8083/connector-plugins
结果如:
[{
"class": "io.confluent.connect.jdbc.JdbcSinkConnector",
"type": "sink",
"version": "5.3.1"
}, {
"class": "io.confluent.connect.jdbc.JdbcSourceConnector",
"type": "source",
"version": "5.3.1"
}, {
"class": "io.debezium.connector.sqlserver.SqlServerConnector",
"type": "source",
"version": "0.10.0.Final"
}, {
"class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
"type": "sink",
"version": "2.3.0"
}, {
"class": "org.apache.kafka.connect.file.FileStreamSourceConnector",
"type": "source",
"version": "2.3.0"
}]
使用helm安装PostgreSQL,这里的PostgreSQL库来自于https://kubernetes.oss-cn-hangzhou.aliyuncs.com/charts/,可在Helm中配置。
对PostgreSQL的账号、密码、初始化数据库、服务类型进行定制后安装:
helm install --name my-pg --set global.storageClass=standard,postgresUser=wisely,postgresPassword=zzzzzz,postgresDatabase=center,service.type=NodePort,service.nodePort=5432 stable/postgresql
编写source配置:sql-server-source.json
{
"name": "sql-server-connector",
"config": {
"connector.class" : "io.debezium.connector.sqlserver.SqlServerConnector",
"tasks.max" : "1",
"database.server.name" : "exam",
"database.hostname" : "172.16.8.221",
"database.port" : "1433",
"database.user" : "sa",
"database.password" : "sa",
"database.dbname" : "bs_portal",
"database.history.kafka.bootstrap.servers" : "my-cluster-kafka-bootstrap:9092",
"database.history.kafka.topic": "schema-changes.person",
"table.whitelist": "dbo.person"
}
}
编写sink配置:postgres-sink.json
{
"name": "postgres-sink",
"config": {
"connector.class": "io.confluent.connect.jdbc.JdbcSinkConnector",
"tasks.max": "1",
"topics": "exam.dbo.MH_YCZM",
"connection.url": "jdbc:postgresql://my-pg-postgresql.default.svc.cluster.local:5432/center?user=wisely&password=zzzzzz",
"transforms": "unwrap",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
"transforms.unwrap.drop.tombstones": "false",
"auto.create": "true",
"insert.mode": "upsert",
"delete.enabled": "true",
"pk.fields": "IPDZ",
"pk.mode": "record_key"
}
}
将配置文件提交到Kafka Connect
cat sql-server-source.json | kubectl exec -i -n kafka my-cluster-kafka-0 -- curl -X POST -H "Accept:application/json" -H "Content-Type:application/json" http://my-connect-cluster-connect-api:8083/connectors -d @-
cat postgres-sink.json| kubectl exec -i -n kafka my-cluster-kafka-0 -- curl -X POST -H "Accept:application/json" -H "Content-Type:application/json" http://my-connect-cluster-connect-api:8083/connectors -d @-
查看所有的Connector
kubectl exec -i -n kafka my-cluster-kafka-0 -- curl -X GET http://my-connect-cluster-connect-api:8083/connectors
删除Connect
kubectl exec -i -n kafka my-cluster-kafka-0 -- curl -X DELETE http://my-connect-cluster-connect-api:8083/connectors/postgres-sink
查看所有的topic
kubectl exec -n kafka my-cluster-kafka-0 -- bin/kafka-topics.sh --list --zookeeper localhost:2181
查看SQL Server Connector中的数据
kubectl exec -i -n kafka my-cluster-kafka-0 -- bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9092 --topic exam.dbo.person --from-beginning
我们此时查看PostgreSQL数据库已经有了person表和数据,当对SQL Server新增、修改、删除数据时,PostgreSQL中也会同步更新。