本文涉及内容:
1、锁的应用场景:
在单体应用中,我们会使用ReentrantLock或Synchronized来应对并发场景。
比如最常见的卖票场景,假如总共有100张票,线程A和线程B同时操作,如下图:
这时有一个共享变量100,线程A和B将100拷贝到自己的工作内存中,当线程A抢到执行权的时候,此时A工作内存中的值是100,然后售票,进行自减操作,将自己工作内存中的值变成了99。当A还没来得及将99刷回到主内存的时候,线程B进来了,此时B拿到的主内存的值还是100,然后售票,进行自减,也是99。这就出现了同一张票出售了两次的情况。所以我们会加锁加volatile保证原子性保证可见性。
2、分布式锁是什么?
上面的场景中,我们可以通过ReentrantLock或者Synchronized搞定,因为你的项目只运行在一台服务器上,只有一个JVM,所有的共享变量都加载到同一个主内存中。而分布式应用中,一个项目部署在多台服务器上,最基本的架构如下图:
比如现在server1、server2和server3读取到数据库的票数都是100,在每一个server中,我们可以用JDK的锁来保证多个用户同时访问我这台server时不会出问题。但问题是,如果client1访问到的是server1,票数是100,然后购票,还没来得及将数据库票数改为99,client2也开始访问系统购票了,client2如果访问的是server1,自然不会出问题,如果访问的是server2,这时server2读取到数据库的票数还是100,那么就出问题了,又出现了同一张票卖了两次的情况。在分布式应用中,JDK的锁机制就无法满足需求了,所以就出现了分布式锁。
3、分布式锁应该满足的条件:
4、分布式锁的实现方式:
set key value NX EX 30000
;也可以用redis的第三方库比如Redisson1、建表:
CREATE TABLE `tb_distributed_lock` (
`dl_id` INT NOT NULL auto_increment COMMENT '主键,自增',
`dl_method_name` VARCHAR (64) NOT NULL DEFAULT '' COMMENT '方法名',
`dl_device_info` VARCHAR (100) NOT NULL DEFAULT '' COMMENT 'ip+线程id',
`dl_operate_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据被操作的时间',
PRIMARY KEY (`dl_id`),
UNIQUE KEY `uq_method_name` (`dl_method_name`) USING BTREE
) ENGINE = INNODB DEFAULT charset = utf8 COMMENT = '分布式锁表';
2、思路:
当执行一个方法的时候,我们首先尝试往表中插入一条数据。如果插入成功,则占锁成功,继续往下执行,执行完删除该记录。如果插入失败,我们再以当前方法名、当前机器ip+线程id、数据被操作时间为5分钟内(5分钟表示锁失效的时间)
为条件去查询,如果有记录,表示该机器的该线程在5分钟内占有过锁了,直接往下执行最后删除记录;如果没有记录,占有锁失败。
一个用户就是一个线程,所以我们可以把机器ip和用户id组合一起当成dl_device_info
。
3、占有锁和释放锁:
INSERT INTO tb_distributed_lock (
dl_method_name,
dl_device_info
)
VALUES
('方法名', 'ip&用户id');
如果insert失败,则:
SELECT
count(*)
FROM
tb_distributed_lock
WHERE
dl_method_name = '方法名'
AND dl_device_info = 'ip&用户id'
AND dl_operate_time < SYSDATE() - 5;
DELETE
FROM
tb_distributed_lock
WHERE
dl_method_name = '方法名'
AND dl_device_info = 'ip&用户id';
4、小总结:
以上表结构可能并不是很好,只是提供了这么一个思路。下面说它的优缺点:
1、原理:
基于redis的set key value nx ex 30
,这条语句的意思就是如果key不存在就设置,并且过期时间为30s,如果key已经存在就会返回false。如果要以毫秒为单位,把ex
换成px
就好了。我们执行方法前,先将方法名当成key,执行这条语句,如果执行成功就是获取锁成功,执行失败就是获取锁失败。
2、代码实现:
/**
* key不存在时就设置,返回true,key已存在就返回false
* @param key
* @param value
* @param timeout
* @return
*/
public static boolean setIfAbsent(String key, String value, Long timeout) {
return redisTemplate.opsForValue().setIfAbsent(key, value, timeout, TimeUnit.SECONDS);
}
/**
* 获取key-value
* @param key
* @return
*/
public static String getString(String key) {
return (String) redisTemplate.opsForValue().get(key);
}
/**
* 删除key
* @param key
* @return
*/
public static boolean delKey(String key) {
return redisTemplate.delete(key);
}
public String hello() {
// 方法名当作key
String key = "hello";
String value = "hellolock";
if (RedisUtil.setIfAbsent(key, value, 60 * 2L)) {
System.out.println("成功获取到锁,开始执行业务逻辑……");
// 假如执行业务逻辑需要1分钟
try {TimeUnit.MINUTES.sleep(1L); } catch (Exception e) { e.printStackTrace();};
// 释放锁先校验value,避免释放错
if (value.equals(RedisUtil.getString(key))) {
RedisUtil.delKey(key);
System.out.println("执行完业务逻辑,释放锁成功");
}
return "success";
} else {
System.out.println("锁被别的线程占有,获取锁失败");
return "acquire lock failed";
}
}
3、小总结:
优点:简单易用,一条redis命令就搞定。可以设置过期时间,避免释放锁失败造成其他线程长时间无法获取锁的问题。
缺点:这种做法只适合redis是单机的时候,如果redis有集群,这样做就会出问题。假如一个线程在master上获取锁成功了,在master还没来得及将数据同步到slave上的时候,master挂了,slave升级为master。第二个线程进来尝试获取锁,因为新的master上并没有这个key,所以,也能成功获取到锁。
解决办法:针对上面的缺点,我们可以采用redis的RedLock算法。假如集群中有n个redis
,我们先从这n个redis中尝试获取锁(锁的过期时间为x
),并记录获取锁的消耗的总时间t
,获取锁成功数量为s
,当且仅当t < x 并且 s >= (n/2 + 1)
时,认为获取锁成功。
1、是什么?
官网地址:https://github.com/redisson/redisson/wiki/Table-of-Content
Redisson是一个功能十分强大的redis客户端,封装了很多分布式操作,比如分布式对象、分布式集合、分布式锁等。它的分布式锁也很多,什么公平锁、可重入锁、redlock等一应俱全,下面来看看如何在springboot项目中使用它。
2、使用redisson做分布式锁:
org.redisson
redisson-spring-boot-starter
3.12.3
io.netty
netty-all
spring:
application:
name: distributed-lock
redis:
# redis单机版的写法
host: 192.168.2.43
port: 6379
# 集群的写法
#cluster:
#nodes:
#- 192.168.0.106,192.168.0.107
#哨兵的写法
#sentinel:
#master: 192.168.0.106
#nodes:
#- 192.168.0.107,192.168.0.108
@Autowired
private RedissonClient redisson;
/**
* 未设置过期时间,没获取到就会一直阻塞着
* @return
*/
@GetMapping("/testLock")
public String testLock() {
log.info("进入testLock方法,开始获取锁");
String key = "testLock";
RLock lock = redisson.getLock(key);
lock.lock();
log.info("获取锁成功,开始执行业务逻辑……");
try {TimeUnit.SECONDS.sleep(10L); } catch (Exception e) { e.printStackTrace();};
log.info("执行完业务逻辑,释放锁");
lock.unlock();
return "success";
}
/**
* 尝试获取锁,没获取到就直接失败,不会阻塞
* @return
*/
@GetMapping("/testTryLock")
public String testTryLock() {
log.info("进入testTryLock方法,开始获取锁");
String key = "testTryLock";
RLock lock = redisson.getLock(key);
boolean res = lock.tryLock();
if (!res) {
log.error("尝试获取锁失败");
return "fail";
} else {
log.info("获取锁成功,开始执行业务逻辑……");
try {TimeUnit.SECONDS.sleep(30L); } catch (Exception e) { e.printStackTrace();};
log.info("执行完业务逻辑,释放锁");
lock.unlock();
return "success";
}
}
/**
* 锁设置了过期时间,即使最后面的unlock失败,20秒后也会自动释放锁
* @return
*/
@GetMapping("/testLockTimeout")
public String testLockTimeout() {
log.info("进入testLockTimeout方法,开始获取锁");
String key = "testLockTimeout";
RLock lock = redisson.getLock(key);
// 20秒后自动释放锁
lock.lock(20, TimeUnit.SECONDS);
log.info("获取锁成功,开始执行业务逻辑……");
try {TimeUnit.SECONDS.sleep(10L); } catch (Exception e) { e.printStackTrace();};
lock.unlock();
return "success";
}
/**
* 尝试获取锁,15秒还没获取到就获取锁失败;获取到了会持有20秒,20秒后自动释放锁
* @return
*/
@GetMapping("/testTryLockTimeout")
public String testTryLockTimeout() {
log.info("进入testTryLockTimeout方法,开始获取锁");
String key = "testTryLockTimeout";
RLock lock = redisson.getLock(key);
boolean res = false;
try {
res = lock.tryLock(15, 20, TimeUnit.SECONDS);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
if (!res) {
log.error("尝试获取锁失败");
return "fail";
} else {
log.info("获取锁成功,开始执行业务逻辑……");
try {TimeUnit.SECONDS.sleep(10L); } catch (Exception e) { e.printStackTrace();};
log.info("执行完业务逻辑,释放锁");
lock.unlock();
return "success";
}
}
3、小总结:
以上就是使用redisson做分布式锁的简单demo,用起来十分的方便。上面是与springboot项目集成,直接用它提供的springboot的starter就好了。用它来做分布式锁的更多用法请移步至官网:redisson分布式锁。
1、zookeeper知识点回顾:
zookeeper有四种类型的节点:
持久节点:默认的节点类型,客户端与zookeeper断开连接后,节点依然存在
持久顺序节点:首先是持久节点,顺序的意思是,zookeeper会根据节点创建的顺序编号
临时节点:客户端与zookeeper断开连接后节点不复存在
临时顺序节点:客户端与zookeeper断开连接后节点不复存在,zookeeper会根据节点创建的顺序编号
2、基于zookeeper实现分布式锁的原理:
我们正是利用了zookeeper的临时顺序节点来实现分布式锁。首先我们创建一个名为lock
(节点名称随意)的持久节点。线程1获取锁时,就在lock
下面创建一个名为lock1
的临时顺序节点,然后查找lock
下所有的节点,判断自己的lock1
是不是第一个,如果是,获取锁成功,继续执行业务逻辑,执行完后删除lock1
节点;如果不是第一个,获取锁失败,就watch排在自己前面一位的节点,当排在自己前一位的节点被干掉时,再检查自己是不是排第一了,如果是,获取锁成功。图解过程如下:
线程1创建了一个lock1,发现lock1的第一个节点,占锁成功;在线程1还没释放锁的时候,线程2来了,创建了一个lock2,发现lock2不是第一个,便监控lock1,线程3此时进行就监控lock2。直到自己是第一个节点时才占锁成功。假如某个线程释放锁的时候zookeeper崩了也没关系,因为是临时节点,断开连接节点就没了,其他线程还是可以正常获取锁,这就是要用临时节点的原因。
说清楚了原理,用代码实现也就不难了,可以引入zookeeper的客户端zkClient
,自己写代码实现(偷个懒,自己就不写了,有兴趣的可以参考我zookeeper的文章,肯定可以自己写出来的)。不过有非常优秀的开源解决方案比如curator,下面就看看curator怎么用。
1、springboot整合curator:
org.apache.zookeeper
zookeeper
3.4.14
org.apache.curator
curator-framework
4.2.0
org.apache.curator
curator-recipes
4.2.0
org.seleniumhq.selenium
selenium-java
curator:
retryCount: 5 # 连接失败的重试次数
retryTimeInterval: 5000 # 每隔5秒重试一次
url: 192.168.2.43:2181 # zookeeper连接地址
sessionTimeout: 60000 # session超时时间1分钟
connectionTimeout: 5000 # 连接超时时间5秒钟
@Configuration
public class CutatorConfig {
@Value("${curator.retryCount}")
private Integer retryCount;
@Value("${curator.retryTimeInterval}")
private Integer retryTimeInterval;
@Value("${curator.url}")
private String url;
@Value("${curator.sessionTimeout}")
private Integer sessionTimeout;
@Value("${curator.connectionTimeout}")
private Integer connectionTimeout;
@Bean
public CuratorFramework curatorFramework() {
return CuratorFrameworkFactory.newClient(url, sessionTimeout, connectionTimeout,
new RetryNTimes(retryCount, retryTimeInterval));
}
}
@SpringBootTest(classes = {DistributedLockApplication.class})
@RunWith(SpringRunner.class)
public class DistributedLockApplicationTests {
@Autowired
private CuratorFramework curatorFramework;
@Test
public void contextLoads() {
curatorFramework.start();
try {
curatorFramework.create().creatingParentContainersIfNeeded().withMode(CreateMode.PERSISTENT).forPath("/zhusl", "test".getBytes());
} catch (Exception e) {
e.printStackTrace();
}
}
}
在确保zookeeper成功启动了的情况下,执行这个单元测试,最后回到linux中,用zkCli.sh连接,查看是否成功创建节点。
2、使用Curator做分布式锁:
Curator封装了很多锁,比如可重入共享锁、不可重入共享锁、可重入读写锁、联锁等。具体可以参考官网:curator分布式锁的用法。
@Component
@Slf4j
public class ZookeeperUtil {
private static CuratorFramework curatorFramework;
private static InterProcessLock lock;
/** 持久节点 */
private final static String ROOT_PATH = "/lock/";
/** 可重入共享锁 */
private static InterProcessMutex interProcessMutex;
/** 不可重入共享锁 */
private static InterProcessSemaphoreMutex interProcessSemaphoreMutex;
/** 可重入读写锁 */
private static InterProcessReadWriteLock interProcessReadWriteLock;
/** 多共享锁(将多把锁当成一把来用) */
private static InterProcessMultiLock interProcessMultiLock;
@Autowired
private void setCuratorFramework(CuratorFramework curatorFramework) {
ZookeeperUtil.curatorFramework = curatorFramework;
ZookeeperUtil.curatorFramework.start();
}
/**
* 获取可重入排他锁
*
* @param lockName
* @return
*/
public static boolean interProcessMutex(String lockName) {
interProcessMutex = new InterProcessMutex(curatorFramework, ROOT_PATH + lockName);
lock = interProcessMutex;
return acquireLock(lockName, lock);
}
/**
* 获取不可重入排他锁
*
* @param lockName
* @return
*/
public static boolean interProcessSemaphoreMutex(String lockName) {
interProcessSemaphoreMutex = new InterProcessSemaphoreMutex(curatorFramework, ROOT_PATH + lockName);
lock = interProcessSemaphoreMutex;
return acquireLock(lockName, lock);
}
/**
* 获取可重入读锁
*
* @param lockName
* @return
*/
public static boolean interProcessReadLock(String lockName) {
interProcessReadWriteLock = new InterProcessReadWriteLock(curatorFramework, ROOT_PATH + lockName);
lock = interProcessReadWriteLock.readLock();
return acquireLock(lockName, lock);
}
/**
* 获取可重入写锁
*
* @param lockName
* @return
*/
public static boolean interProcessWriteLock(String lockName) {
interProcessReadWriteLock = new InterProcessReadWriteLock(curatorFramework, ROOT_PATH + lockName);
lock = interProcessReadWriteLock.writeLock();
return acquireLock(lockName, lock);
}
/**
* 获取联锁(多把锁当成一把来用)
* @param lockNames
* @return
*/
public static boolean interProcessMultiLock(List lockNames) {
if (lockNames == null || lockNames.isEmpty()) {
log.error("no lockNames found");
return false;
}
interProcessMultiLock = new InterProcessMultiLock(curatorFramework, lockNames);
try {
if (!interProcessMultiLock.acquire(10, TimeUnit.SECONDS)) {
log.info("Thread:" + Thread.currentThread().getId() + " acquire distributed lock fail");
return false;
} else {
log.info("Thread:" + Thread.currentThread().getId() + " acquire distributed lock success");
return true;
}
} catch (Exception e) {
log.info("Thread:" + Thread.currentThread().getId() + " release lock occured an exception = " + e);
return false;
}
}
/**
* 释放锁
*
* @param lockName
*/
public static void releaseLock(String lockName) {
try {
if (lock != null && lock.isAcquiredInThisProcess()) {
lock.release();
curatorFramework.delete().inBackground().forPath(ROOT_PATH + lockName);
log.info("Thread:" + Thread.currentThread().getId() + " release lock success");
}
} catch (Exception e) {
log.info("Thread:" + Thread.currentThread().getId() + " release lock occured an exception = " + e);
}
}
/**
* 释放联锁
*/
public static void releaseMultiLock(List lockNames) {
try {
if (lockNames == null || lockNames.isEmpty()) {
log.error("no no lockNames found to release");
return;
}
if (interProcessMultiLock != null && interProcessMultiLock.isAcquiredInThisProcess()) {
interProcessMultiLock.release();
for (String lockName : lockNames) {
curatorFramework.delete().inBackground().forPath(ROOT_PATH + lockName);
}
log.info("Thread:" + Thread.currentThread().getId() + " release lock success");
}
} catch (Exception e) {
log.info("Thread:" + Thread.currentThread().getId() + " release lock occured an exception = " + e);
}
}
/**
* 获取锁
*
* @param lockName
* @param interProcessLock
* @return
*/
private static boolean acquireLock(String lockName, InterProcessLock interProcessLock) {
int flag = 0;
try {
while (!interProcessLock.acquire(2, TimeUnit.SECONDS)) {
flag++;
if (flag > 1) {
break;
}
}
} catch (Exception e) {
log.error("acquire lock occured an exception = " + e);
return false;
}
if (flag > 1) {
log.info("Thread:" + Thread.currentThread().getId() + " acquire distributed lock fail");
return false;
} else {
log.info("Thread:" + Thread.currentThread().getId() + " acquire distributed lock success");
return true;
}
}
}
@RestController
@RequestMapping("/zookeeper-lock")
public class ZookeeperLockController {
@GetMapping("/testLock")
public String testLock() {
// 获取锁
boolean lockResult = ZookeeperUtil.interProcessMutex("testLock");
if (lockResult) {
try {
// 模拟执行业务逻辑
TimeUnit.MINUTES.sleep(1L);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 释放锁
ZookeeperUtil.releaseLock("testLock");
return "success";
} else {
return "fail";
}
}
}
打开一个浏览器窗口访问,后台打印出获取锁成功的日志,在1分钟之内,开启另一个窗口再次访问,打印出获取锁失败的日志,说明分布式锁生效了。
本文项目地址:分布式锁