AMD 显卡编译 pytorch 指南 ROCM + pytorch

ROCM + pytorch 快速安装方法

最新更新: 2022.10.10   由于pytorch官方已经支持rocm, 不需要自己编译,请访问

http://www.pytorch.org  进行安装

---------------------------------------------------------------------------------

需要在干净机器上安装

原始参考资料 https://github.com/aieater/rocm_pytorch_informations ,有修改

在ubuntu 18.04 及ubuntu 20.04 测试通过

以下为安装pytorch 1.6 + rocm 3.3 (需要版本匹配)

1. 更新系统,安装必要的库

sudo apt update sudo apt -y dist-upgrade sudo apt install -y libnuma-dev

1 安装配套的rocm

配置rocm仓库 ,pytorch 1.6配全 rocm 3.3


 

wget -q -O - http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add - 

echo 'deb [arch=amd64] http://repo.radeon.com/rocm/apt/3.3/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list

安装必要的包并重启

安装必要的rocm 驱动并重启,重要重要!!!

sudo apt update sudo apt install -y rocm-dkms rocm-libs hipcub miopen-hip rccl 

sudo reboot

确认你的显卡是支持的型号:

# Make sure to recognized GPUs as file descriptor.

ls /dev/dri/ 

# >> card0 renderD128

rednerD128 即是Radeon VII

下载并安装 anaconda

www.anaconda.org 下载你自己系统对应的安装包并安装

https://www.anaconda.com/downloads

创建anaconda 环境

conda create -n pytorch python=3.7

注意根据下面的表格中的支持情况,选择相应的python版本,比如我安装的是pytorch 1.6, 则对应的是python 3.7.

准备环境路

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64' | sudo tee -a /etc/profile.d/rocm.sh

sudo reboot

安装intel MKL 加速库

sudo sysctl -w net.ipv6.conf.all.disable_ipv6=1 

sudo sysctl -w net.ipv6.conf.default.disable_ipv6=1 

sudo sysctl -w net.ipv6.conf.lo.disable_ipv6=1

cd /tmp wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS-2019.PUB sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS-2019.PUB sudo sh -c 'echo deb https://apt.repos.intel.com/mkl all main > /etc/apt/sources.list.d/intel-mkl.list' sudo apt-get update && sudo apt-get install intel-mkl-64bit-2018.2-046

支持的显卡:

GFX code

架构

产品名

下载地址

GFX806

Polaris Series

RX550/RX560/RX570/RX580/RX590 ...

GFX900

Vega10 Series

Vega64/Vega56/MI25/WX9100/FrontierEdition ...

GFX906

Vega20 Series

RadeonVII/MI50/MI60 ...

使用预编译方法或源码安装方法,二选一,建议源码

一、使用预编译wheel 安装 

即:

S表示可以正常安装

Python

ROCm

PyTorch

GPU

S

3.7

3.3

1.6.0a

GFX906

3.7

3.3

1.6.0a

GFX900

-

3.5

2.9

1.3.0a

GFX900

3.5

2.9

1.3.0a

GFX906

3.7

2.9

1.3.0a

GFX900

-

3.7

2.9

1.3.0a

GFX906

安装 : 以pytorch 1.6 radeon VII 显卡为例:

pip install http://install.aieater.com/libs/pytorch/rocm3.3/gfx906/torch-1.6.0a0-cp37-cp37m-linux_x86_64.whl torchvision

-----------------------------------------------------------------------------------------

二、源码安装方法

apt install libopenblas-dev cmake libnuma-dev autoconf build-essential ca-certificates curl libgoogle-glog-dev libhiredis-dev libleveldb-dev liblmdb-dev libopencv-dev libpthread-stubs0-dev libsnappy-dev libprotobuf-dev protobuf-compiler ninja_build 

sudo apt install -y gcc cmake clang ccache llvm ocl-icd-opencl-dev sudo apt install -y rocrand rocblas miopen-hip miopengemm rocfft rocprim rocsparse rocm-cmake rocm-dev rocm-device-libs rocm-libs rccl hipcub rocthrust hipify-clang

获取 代码

git clone --recursive https://github.com/pytorch/pytorch.git cd pytorch

python tools/amd_build/build_amd.py

或 下载预处理好的: (强烈建议下载这个代码,其它的不一定能编译)

wget http://install.aieater.com/libs/pytorch/sources/pytorch1.6.0.tar.gz

tar zxf pytorch1.6.0.tar.gz

cd pytorch

安装必要的python库

pip install -r requirements.txt

设置环境变量:

export PYTORCH_ROCM_ARCH=gfx906

export HCC_AMDGPU_TARGET=gfx906

export LIBRARY_PATH="/opt/rocm/rccl/lib/"

#注意,必须安装 ninja-build 否则 会出错,确认方法

apt install ninja-build , 确认已经安装。

HIP_PLATFORM=hcc USE_NINJA=1 PYTORCH_ROCM_ARCH=gfx906 USE_CUDA=OFF USE_ROCM=1 USE_LMDB=1 RCCL_DIR=/opt/rocm/rccl USE_RCCL=1 BUILD_CAFFE2_OPS=0 BUILD_TEST=0 USE_OPENCV=1 MAX_JOBS=16 python setup.py install --user

造轮子:(保存于/root下)

python setup.py bdist_wheel -d /root/

安装torchtext

git clone GitHub - pytorch/text: Data loaders and abstractions for text and NLP

cd text

pip install ./

安装torchvision

git clone https://github.com/pytorch/vision

cd vision

USE_CUDA=OFF USE_ROCM=1 USE_LMDB=1 USE_OPENCV=1 MAX_JOBS=16 python setup.py install --user

cd ..

你可能感兴趣的:(人工智能落地,pytorch,pytorch,ubuntu,python)