张量:数据经常用张量(Tensor)的形式来存储。张量是矩阵的扩展与延伸,可以认为是高阶的矩阵。1阶张量为向量,2阶张量为矩阵。如果你对Numpy熟悉,那么张量是类似于Numpy的多维数组(ndarray)的概念,可以具有任意多的维度。
在深度学习框架中数据一般使用张量来进行存储,例如一维张量就是标量二维张量就是向量等等,总的来说张量就是数据的总称,区分数据可以依靠不同维数的张量。
算子:如果我们实现每个基础函数的前向函数和反向函数,就可以非常方便地通过这些基础函数组合出复杂函数,并通过链式法则反向计算复杂函数的偏导数。 在深度学习框架中,这些基本函数的实现称为算子。
1.2.1.1 指定数据创建张量
通过指定的Python列表数据[2.0, 3.0, 4.0],创建一个一维张量。
# 导入torch包
import torch
# 通过指定的Python列表数据[2.0, 3.0, 4.0],创建一个一维张量
ndim_1_Tensor =torch.tensor([2.0, 3.0, 4.0])
print(ndim_1_Tensor)
tensor([2., 3., 4.])
Process finished with exit code 0
1.2.1.2 指定形状创建
通过指定的Python列表数据来创建类似矩阵(matrix)的二维张量。
# 导入torch包
import torch
# 创建二维Tensor
ndim_2_Tensor = torch.tensor([[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]])
print(ndim_2_Tensor)
tensor([[1., 2., 3.],
[4., 5., 6.]])
Process finished with exit code -1073741749 (0xC000004B)
1.2.1.3 指定区间创建
同样地,还可以创建维度为3、4...N等更复杂的多维张量。
# 导入torch包
import torch
#创建多维数组
ndim_3_Tensor = torch.tensor([[[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10]],
[[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20]]])
print(ndim_3_Tensor)
tensor([[[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10]],
[[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20]]])
Process finished with exit code -1073741749 (0xC000004B)
# 导入torch包
import torch
# 创建二维Tensor
ndim_2_Tensor = torch.tensor([[1.0, 2.0],
[4.0, 5.0, 6.0]])
print(ndim_2_Tensor)
如出现上述形式机器报错
ndim_2_Tensor = torch.tensor([[1.0, 2.0],
ValueError: expected sequence of length 2 at dim 1 (got 3)
1.2.2.1 张量的形状
张量共有4种形状属性(ndim、shape、shape[n]、size)
Tensor.ndim:张量的维度,例如向量的维度为1,矩阵的维度为2。
Tensor.shape: 张量每个维度上元素的数量。
Tensor.shape[n]:张量第nnn维的大小。第nnn维也称为轴(axis)。
Tensor.size:张量中全部元素的个数。
例如:创建出如下的一个四维张量,并打印出shape
、ndim
、shape[n]
、size
属性。
import torch
ndim_4_Tensor = torch.tensor([2, 3, 4, 5])
print("Number of dimensions:", ndim_4_Tensor.ndim)
print("Shape of Tensor:", ndim_4_Tensor.shape)
print("Elements number along axis 0 of Tensor:", ndim_4_Tensor.shape[0])
print("Elements number along the last axis of Tensor:", ndim_4_Tensor.shape[-1])
print('Number of elements in Tensor: ', ndim_4_Tensor.size())
Number of dimensions: 1
Shape of Tensor: torch.Size([4])
Elements number along axis 0 of Tensor: 4
Elements number along the last axis of Tensor: 4
Number of elements in Tensor: torch.Size([4])
Process finished with exit code 0
1.2.2.2 形状的改变
对张量形状的reshape并不会改变原始数据,只是对原数据进行平铺得到改变后的形状
import torch
#定义一个shape为[3,2,5]的三维Tensor
ndim_3_Tensor =torch.tensor([[[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10]],
[[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20]],
[[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30]]])
print("the shape of ndim_3_Tensor:", ndim_3_Tensor.shape)
# paddle.reshape 可以保持在输入数据不变的情况下,改变数据形状。这里我们设置reshape为[2,5,3]
reshape_Tensor = torch.reshape(ndim_3_Tensor, [2, 5, 3])
print("After reshape:", reshape_Tensor)
the shape of ndim_3_Tensor: torch.Size([3, 2, 5])
After reshape: tensor([[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12],
[13, 14, 15]],
[[16, 17, 18],
[19, 20, 21],
[22, 23, 24],
[25, 26, 27],
[28, 29, 30]]])
Process finished with exit code -1073741749 (0xC000004B)
1.2.2.3 张量的数据类型
import torch
# 使用torch.tensor通过已知数据来创建一个Tensor
print("Tensor dtype from Python integers:", torch.tensor(1).dtype)
print("Tensor dtype from Python floating point:", torch.tensor(1.0).dtype)
Tensor dtype from Python integers: torch.int64
Tensor dtype from Python floating point: torch.float32
Process finished with exit code -1073741749 (0xC000004B)
1.2.2.4 张量的设备位置
#可以指定位置是处于cpu还是gpu,若有多个gpu,也可以将其确切的指定在哪一块上。
print(ndim_1_Tensor .device)
cpu
Process finished with exit code -1073741749 (0xC000004B)
1.2.4 张量的访问
import torch
ndim_1_Tensor =torch.tensor([1., 2.])
# 将当前 Tensor 转化为 numpy.ndarray
print('Tensor to convert: ', ndim_1_Tensor.numpy())
Tensor to convert: [1. 2.]
Process finished with exit code 0
1.2.4.1 索引和切片
import torch
# 定义1个一维Tensor
ndim_1_Tensor =torch.tensor([2.0, 3.0, 4.0])
print(ndim_1_Tensor)
print("索引:",ndim_1_Tensor[-1])
print("切片:",ndim_1_Tensor[0:2])
tensor([2., 3., 4.])
索引: tensor(4.)
切片: tensor([2., 3.])
Process finished with exit code 0
1.2.4.2 访问张量
import torch
# 定义1个一维Tensor
ndim_1_Tensor = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8])
print("Origin Tensor:", ndim_1_Tensor)
print("First element:", ndim_1_Tensor[0])
print("Last element:", ndim_1_Tensor[-1])
print("All element:", ndim_1_Tensor[:])
print("Before 3:", ndim_1_Tensor[:3])
print("Interval of 3:", ndim_1_Tensor[::3])
Origin Tensor: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8])
First element: tensor(0)
Last element: tensor(8)
All element: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8])
Before 3: tensor([0, 1, 2])
Interval of 3: tensor([0, 3, 6])
Process finished with exit code -1073741749 (0xC000004B)
1.2.4.3 修改张量
import torch
ndim_1_Tensor =torch.tensor([2,3,1,4])
ndim_1_Tensor[1]=1
print("修改张量操作:",ndim_1_Tensor)
修改张量操作: tensor([2, 1, 1, 4])
Process finished with exit code -1073741749 (0xC000004B)
1.2.5.1 数学运算
import torch
ndim_1_Tensor =torch.tensor([2,4,6,8])
ndim_2_Tensor =torch.tensor([1,2,3,4])
print("张量的加法运算结果:",ndim_1_Tensor+ndim_2_Tensor)
print("张量的减法运算结果:",ndim_1_Tensor-ndim_2_Tensor)
print("张量的乘法运算结果:",ndim_1_Tensor*ndim_2_Tensor)
print("张量的除法运算结果:",ndim_1_Tensor/ndim_2_Tensor)
张量的加法运算结果: tensor([ 3, 6, 9, 12])
张量的减法运算结果: tensor([1, 2, 3, 4])
张量的乘法运算结果: tensor([ 2, 8, 18, 32])
张量的除法运算结果: tensor([2., 2., 2., 2.])
Process finished with exit code -1073741749 (0xC000004B)
1.2.5.2 逻辑运算
import torch
ndim_1_Tensor =torch.tensor([2,4,6,8])
ndim_2_Tensor =torch.tensor([1,2,3,4])
print("判断两个张量是否不同:",ndim_1_Tensor!=ndim_2_Tensor)
判断两个张量是否不同: tensor([True, True, True, True])
Process finished with exit code -1073741749 (0xC000004B)
1.2.5.3 矩阵运算
import torch
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
print("加法运算结果:", x + y)
print("减法运算结果:", x - y)
print("乘法运算结果:", x * y)
print("除法运算结果:", x / y)
print("幂运算结果:", x ** y)
import torch
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
print("加法运算结果:", x + y)
print("减法运算结果:", x - y)
print("乘法运算结果:", x * y)
print("除法运算结果:", x / y)
print("幂运算结果:", x ** y)
1.2.5.4 广播机制
import torch
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
print(a+b)
tensor([[0, 1],
[1, 2],
[2, 3]])
进程已结束,退出代码为 0
#读取数据集house_tiny.csv、boston_house_prices.csv、Iris.csv
import pandas as pd
df1 =r"C:\Users\320\PycharmProjects\pythonProject\Iris.csv"
df2 =r"C:\Users\320\PycharmProjects\pythonProject\boston_house_prices.csv"
df3 =r"C:\Users\320\PycharmProjects\pythonProject\house_tiny.csv"
date1=pd.read_csv(df1)
date2=pd.read_csv(df2)
date3=pd.read_csv(df3)
print(date1)
#读取date2,date3同样方法
Id SepalLengthCm ... PetalWidthCm Species
0 1 5.1 ... 0.2 Iris-setosa
1 2 4.9 ... 0.2 Iris-setosa
2 3 4.7 ... 0.2 Iris-setosa
3 4 4.6 ... 0.2 Iris-setosa
4 5 5.0 ... 0.2 Iris-setosa
.. ... ... ... ... ...
145 146 6.7 ... 2.3 Iris-virginica
146 147 6.3 ... 1.9 Iris-virginica
147 148 6.5 ... 2.0 Iris-virginica
148 149 6.2 ... 2.3 Iris-virginica
149 150 5.9 ... 1.8 Iris-virginica
[150 rows x 6 columns]
Process finished with exit code 0
#对house_tiny.csv中的NAN进行赋值
inputs, outputs = date3.iloc[:, 0:1], date3.iloc[:, 1]
inputs = inputs.fillna(inputs.mean())
print(inputs)
NumRooms
0 3.0
1 2.0
2 4.0
3 3.0
Process finished with exit code -1073741749 (0xC000004B)
x,y=torch.tensor(inputs.values),torch.tensor(outputs.values)
print(x)
print(y)
tensor([5.1000, 4.9000, 4.7000, 4.6000, 5.0000, 5.4000, 4.6000, 5.0000, 4.4000,
4.9000, 5.4000, 4.8000, 4.8000, 4.3000, 5.8000, 5.7000, 5.4000, 5.1000,
5.7000, 5.1000, 5.4000, 5.1000, 4.6000, 5.1000, 4.8000, 5.0000, 5.0000,
5.2000, 5.2000, 4.7000, 4.8000, 5.4000, 5.2000, 5.5000, 4.9000, 5.0000,
5.5000, 4.9000, 4.4000, 5.1000, 5.0000, 4.5000, 4.4000, 5.0000, 5.1000,
4.8000, 5.1000, 4.6000, 5.3000, 5.0000, 7.0000, 6.4000, 6.9000, 5.5000,
6.5000, 5.7000, 6.3000, 4.9000, 6.6000, 5.2000, 5.0000, 5.9000, 6.0000,
6.1000, 5.6000, 6.7000, 5.6000, 5.8000, 6.2000, 5.6000, 5.9000, 6.1000,
6.3000, 6.1000, 6.4000, 6.6000, 6.8000, 6.7000, 6.0000, 5.7000, 5.5000,
5.5000, 5.8000, 6.0000, 5.4000, 6.0000, 6.7000, 6.3000, 5.6000, 5.5000,
5.5000, 6.1000, 5.8000, 5.0000, 5.6000, 5.7000, 5.7000, 6.2000, 5.1000,
5.7000, 6.3000, 5.8000, 7.1000, 6.3000, 6.5000, 7.6000, 4.9000, 7.3000,
6.7000, 7.2000, 6.5000, 6.4000, 6.8000, 5.7000, 5.8000, 6.4000, 6.5000,
7.7000, 7.7000, 6.0000, 6.9000, 5.6000, 7.7000, 6.3000, 6.7000, 7.2000,
6.2000, 6.1000, 6.4000, 7.2000, 7.4000, 7.9000, 6.4000, 6.3000, 6.1000,
7.7000, 6.3000, 6.4000, 6.0000, 6.9000, 6.7000, 6.9000, 5.8000, 6.8000,
6.7000, 6.7000, 6.3000, 6.5000, 6.2000, 5.9000], dtype=torch.float64)
进程已结束,退出代码为 0