opencv-python多线程读取视频

1. 什么是多线程

线程是进程中的一个执行单元。多线程是指通过在线程之间快速切换对 CPU 的控制来并发执行多个线程。

在Python中,我们通常使用threading库对线程来进行控制。

2. 为什么要用多线程

在没有多线程的程序中按顺序进行处理时,程序等待下一帧可用,然后再对其进行处理。读取帧所需的时间主要与请求、等待和将下一个视频帧从相机传输到内存所需的时间有关。对视频帧进行计算所花费的时间,无论是在 CPU 还是 GPU 上,占据了视频处理所花费的大部分时间。

多线程可以运用在深度学习中的图像识别,例如:利用视频流进行目标检测、实时的语义分割以及人脸识别等等。

3. 多线程怎么实现

下例程序运行后,在英文输入法下按q即可结束运行。代码来自于https://github.com/SihabSahariar/Multi-threading-OpenCV-

# importing required libraries 
import cv2 
import time 
from threading import Thread # library for implementing multi-threaded processing 

# defining a helper class for implementing multi-threaded processing 
class WebcamStream :
    def __init__(self, stream_id=0):
        self.stream_id = stream_id   # default is 0 for primary camera 
        
        # opening video capture stream 
        self.vcap      = cv2.VideoCapture(self.stream_id)
        if self.vcap.isOpened() is False :
            print("[Exiting]: Error accessing webcam stream.")
            exit(0)
        fps_input_stream = int(self.vcap.get(5))
        print("FPS of webcam hardware/input stream: {}".format(fps_input_stream))
            
        # reading a single frame from vcap stream for initializing 
        self.grabbed , self.frame = self.vcap.read()
        if self.grabbed is False :
            print('[Exiting] No more frames to read')
            exit(0)

        # self.stopped is set to False when frames are being read from self.vcap stream 
        self.stopped = True 

        # reference to the thread for reading next available frame from input stream 
        self.t = Thread(target=self.update, args=())
        self.t.daemon = True # daemon threads keep running in the background while the program is executing 
        
    # method for starting the thread for grabbing next available frame in input stream 
    def start(self):
        self.stopped = False
        self.t.start() 

    # method for reading next frame 
    def update(self):
        while True :
            if self.stopped is True :
                break
            self.grabbed , self.frame = self.vcap.read()
            if self.grabbed is False :
                print('[Exiting] No more frames to read')
                self.stopped = True
                break 
        self.vcap.release()

    # method for returning latest read frame 
    def read(self):
        return self.frame

    # method called to stop reading frames 
    def stop(self):
        self.stopped = True 


# initializing and starting multi-threaded webcam capture input stream 
webcam_stream = WebcamStream(stream_id=0) #  stream_id = 0 is for primary camera 
webcam_stream.start()

# processing frames in input stream
num_frames_processed = 0 
start = time.time()
while True :
    if webcam_stream.stopped is True :
        break
    else :
        frame = webcam_stream.read() 

    # adding a delay for simulating time taken for processing a frame 
    delay = 0.03 # delay value in seconds. so, delay=1 is equivalent to 1 second 
    time.sleep(delay) 
    num_frames_processed += 1 

    cv2.imshow('frame' , frame)
    key = cv2.waitKey(1)
    if key == ord('q'):
        break
end = time.time()
webcam_stream.stop() # stop the webcam stream 

# printing time elapsed and fps 
elapsed = end-start
fps = num_frames_processed/elapsed 
print("FPS: {} , Elapsed Time: {} , Frames Processed: {}".format(fps, elapsed, num_frames_processed))

# closing all windows 
cv2.destroyAllWindows()

你可能感兴趣的:(opencv-python,python,opencv,音视频)