目录
1. 编程实现图6-1,并观察特征
2. 观察梯度方向
3. 编写代码实现算法,并可视化轨迹
4. 分析上图,说明原理(选做)
5. 总结SGD、Momentum、AdaGrad、Adam的优缺点
6. Adam这么好,SGD是不是就用不到了?
ref
代码:
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def func(x, y):
return x * x / 20 + y * y
def paint_loss_func():
x = np.linspace(-50, 50, 100) # x的绘制范围是-50到50,从改区间均匀取100个数
y = np.linspace(-50, 50, 100) # y的绘制范围是-50到50,从改区间均匀取100个数
X, Y = np.meshgrid(x, y)
Z = func(X, Y)
fig = plt.figure() # figsize=(10, 10))
ax = Axes3D(fig)
plt.xlabel('x')
plt.ylabel('y')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()
paint_loss_func()
结果:
特征:y轴方向梯度大,x轴方向梯度小;很多位置的梯度并没有指向最小位置(0,0)。
代码:
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
class SGD:
"""随机梯度下降法(Stochastic Gradient Descent)"""
def __init__(self, lr=0.01):
self.lr = lr
def update(self, params, grads):
for key in params.keys():
params[key] -= self.lr * grads[key]
class Momentum:
"""Momentum SGD"""
def __init__(self, lr=0.01, momentum=0.9):
self.lr = lr
self.momentum = momentum
self.v = None
def update(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)
for key in params.keys():
self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
params[key] += self.v[key]
class Nesterov:
"""Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""
def __init__(self, lr=0.01, momentum=0.9):
self.lr = lr
self.momentum = momentum
self.v = None
def update(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)
for key in params.keys():
self.v[key] *= self.momentum
self.v[key] -= self.lr * grads[key]
params[key] += self.momentum * self.momentum * self.v[key]
params[key] -= (1 + self.momentum) * self.lr * grads[key]
class AdaGrad:
"""AdaGrad"""
def __init__(self, lr=0.01):
self.lr = lr
self.h = None
def update(self, params, grads):
if self.h is None:
self.h = {}
for key, val in params.items():
self.h[key] = np.zeros_like(val)
for key in params.keys():
self.h[key] += grads[key] * grads[key]
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
class RMSprop:
"""RMSprop"""
def __init__(self, lr=0.01, decay_rate=0.99):
self.lr = lr
self.decay_rate = decay_rate
self.h = None
def update(self, params, grads):
if self.h is None:
self.h = {}
for key, val in params.items():
self.h[key] = np.zeros_like(val)
for key in params.keys():
self.h[key] *= self.decay_rate
self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
class Adam:
"""Adam (http://arxiv.org/abs/1412.6980v8)"""
def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.iter = 0
self.m = None
self.v = None
def update(self, params, grads):
if self.m is None:
self.m, self.v = {}, {}
for key, val in params.items():
self.m[key] = np.zeros_like(val)
self.v[key] = np.zeros_like(val)
self.iter += 1
lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)
for key in params.keys():
self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])
params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
def f(x, y):
return x ** 2 / 20.0 + y ** 2
def df(x, y):
return x / 10.0, 2.0 * y
init_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0
optimizers = OrderedDict()
optimizers["SGD"] = SGD(lr=0.95)
optimizers["Momentum"] = Momentum(lr=0.1)
optimizers["AdaGrad"] = AdaGrad(lr=1.5)
optimizers["Adam"] = Adam(lr=0.3)
idx = 1
for key in optimizers:
optimizer = optimizers[key]
x_history = []
y_history = []
params['x'], params['y'] = init_pos[0], init_pos[1]
for i in range(30):
x_history.append(params['x'])
y_history.append(params['y'])
grads['x'], grads['y'] = df(params['x'], params['y'])
optimizer.update(params, grads)
x = np.arange(-10, 10, 0.01)
y = np.arange(-5, 5, 0.01)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
# for simple contour line
mask = Z > 7
Z[mask] = 0
# plot
plt.subplot(2, 2, idx)
idx += 1
plt.plot(x_history, y_history, 'o-', color="red")
plt.contour(X, Y, Z) # 绘制等高线
plt.ylim(-10, 10)
plt.xlim(-10, 10)
plt.plot(0, 0, '+')
plt.title(key)
plt.xlabel("x")
plt.ylabel("y")
plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距
plt.show()
paint_loss_func()
结果:
1.为什么SGD会走“之字形”?其它算法为什么会比较平滑?
由于函数的形状非均向,图像的变化并不均匀,所以y方向变化很大时,x方向变化很小,梯度的方向并没有指向最小值的方向,只能迂回往复地寻找,效率很低。
其他算法通过调整参数减弱之字形变动幅度从而更加平滑。
2.Momentum、AdaGrad对SGD的改进体现在哪里?速度?方向?在图上有哪些体现?
Momentum引入了动量的概念,增加了新变量v,表示物体在梯度方向上受力,在这个力的作用下,物体的速度增加。使得虽然x轴方向上受到的力非常小,但是一直在同一方向上受力,所以朝同一个方向会有一定的加速。反过来,虽然y轴方向上受到的力很大,但是因为交互地受到正方向和反方向的力,它们会互相抵消,所以y轴方向上的速度不稳定。因此,和SGD时的情形相比,可以更快地朝x轴方向靠近。
AdaGard引入了学习率衰减的方法,即一开始多学,后来逐渐少学。为参数的每个元素适当地调整学习率,增加了新变量h,使得变动大的参数的学习率逐渐减小。由于y轴方向上的梯度较大,因此刚开始变动较大,但是后面会根据这个较大的变动按比例进行调整,减小更新的步伐。因此, y轴方向上的更新程度被减弱。
3.仅从轨迹来看,Adam似乎不如AdaGrad效果好,是这样么?
是的。
4.四种方法分别用了多长时间?是否符合预期?
SGD:0.29798
Momentum:0.11013
AdaGrad:0.20334
Adam:0.23995
符合预期。
5.调整学习率、动量等超参数,轨迹有哪些变化?
lr=2:
lr=0.01:
SGD:
优点:训练收敛速度快,可以在线更新模型,有几率跳出局部最优达到更好的局部最优或者全局最优。
缺点:更新方向完全依赖于当前的batch,不稳定,容易陷入局部最优,容易困在鞍点。
Momentum:
优点:
下降中后期时,在局部最小值来回震荡的时候,, 使得更新幅度增大,跳出陷阱
在梯度改变方向的时候,能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛
缺点:需要人工设定学习率
Adagrad:
优点:能够实现学习率的自动更改。如果这次梯度大,那么学习速率衰减的就快一些;如果这次梯度小,那么学习速率衰减的就满一些。
缺点:
仍依赖于人工设置一个全局学习率,学习率设置过大,对梯度的调节太大。中后期,梯度接近于0,使得训练提前结束。
Adam:
优点:对内存需求较小,为不同的参数计算不同的自适应学习率。参数更新的大小不随着梯度大小的缩放而变化;更新参数时的步长的边界受限于超参的步长的设定;不需要固定的目标函数;支持稀疏梯度;它能够自然的执行一种步长的退火。
缺点:可能不收敛或错过全局最优解。
Adam之流虽然说已经简化了调参,但是并没有一劳永逸地解决问题,默认参数虽然好,但也不是放之四海而皆准。因此,在充分理解数据的基础上,依然需要根据数据特性、算法特性进行充分的
调参实验。Adam和SGD可以互补,每个算法都有优缺点,具体问题具体分析,合作才能共赢。
Adam那么棒,为什么还对SGD念念不忘 (2)—— Adam的两宗罪
SGD、Momentum、 AdaGrad、Adam