pytorch gather_【Pytorch】Pytorch-1.1.0 版本新特性

2019年05月01日,Pytorch 1.1.0 版本正式发布啦~ https:// github.com/pytorch/pyto rch/releases/tag/v1.1.0

主要的几个功能:
1. TensorBoard (currently experimental)
2. JIT 的升级
· [JIT] Attributes in ScriptModules
· [JIT] Dictionary and List Support in TorchScript
· [JIT] User-defined classes in TorchScript (experimental)
3. DistributedDataParallel new functionality and tutorials

TensorBoard (currently experimental)

  • PyTorch now supports TensorBoard logging with a simplefrom torch.utils.tensorboard import SummaryWritercommand.
  • Histograms, embeddings, scalars, images, text, graphs, and more can be visualized across training runs.
  • TensorBoard support is currently experimental. You can browse the docs here.

JIT

  • Attributes in ScriptModules
  1. Attributes can be assigned on a ScriptModule by wrapping them with torch.jit.Attribute and specifying the type.
  2. They will be serialized along with any paramters/buffers when you call torch.jit.save() , so they are a great way to store arbitrary state in your model.
  3. See the docs for more info.
  4. Example:
class Foo(torch.jit.ScriptModule):
  def __init__(self, a_dict):
    super(Foo, self).__init__(False)
    self.words = torch.jit.Attribute([], List[str])
    self.some_dict = torch.jit.Attribute(a_dict, Dict[str, int])

  @torch.jit.script_method
  def forward(self, input: str) -> int:
    self.words.append(input)
    return self.some_dict[input]
  • Dictionary and List Support in TorchScript
  1. TorchScript now has robust support for list and dictionary types. They behave much like Python lists and dictionaries, supporting most built-in methods, as well as simple comprehensions and for…in constructs.
  • User-defined classes in TorchScript (experimental)
  1. For more complex stateful operations, TorchScript now supports annotating a class with @torch.jit.script. Classes used this way can be JIT-compiled and loaded in C++ like other TorchScript modules.
  2. See the docs for more info.
  3. Example:
@torch.jit.script
class Pair:
	def __init__(self, first, second)
		self.first = first
		self.second = second

	def sum(self):
		return self.first + self.second

DistributedDataParallel new functionality and tutorials

  • nn.parallel.DistributedDataParallel: can now wrap multi-GPU modules, which enables use cases such as model parallel (tutorial) on one server and data parallel (tutorial) across servers. (19271).

Breaking Changes

  • Tensor.set_: the device of a Tensor can no longer be changed via Tensor.set_. This would most commonly happen when setting up a Tensor with the default CUDA device and later swapping in a Storage on a different CUDA device. Instead, set up the Tensor on the correct device from the beginning. (18832).
  • Pay attention to the order change of lr_scheduler.step(). (7889).
  • torch.unique: changed the default value of sorted to True. (15379).
  • [JIT] Rename isTensor api -> isCompleteTensor. #18437
  • [JIT] Remove GraphExecutor's python bindings. #19141
  • [C++]: many methods on Type no longer exist; use the functional or Tensor method equivalent. (17991).
  • [C++]: the Backend constructor of TensorOptions no longer exists. (18137).
  • [C++, Distributed]: Remove c10d ProcessGroup::getGroupRank has been removed. (19147).

【New Features】
这次的版本更新添加了很多可调用的方法。

Operators

  • torch.tril_indices, torch.triu_indices: added operator with same behavior as NumPy. (14904, 15203).
  • torch.combinations, torch.cartesian_prod: added new itertools-like operators. (9393).
  • torch.repeat_interleave: new operator similar to numpy.repeat. (18395).
  • torch.from_file: new operator similar to Storage.from_file, but returning a tensor. (18688).
  • torch.unique_consecutive: new operator with semantics similar to std::unique in C++. (19060).
  • torch.tril, torch.triu, torch.trtrs: now support batching. (15257, 18025).
  • torch.gather: add support for sparse_grad option. (17182).
  • torch.std, torch.max_values, torch.min_values, torch.logsumexp can now operate over multiple dimensions at once. (14535, 15892, 16475).
  • torch.cdist: added operator equivalent to scipy.spatial.distance.cdist. (16168, 17173).
  • torch.__config__.show(): reports detailed version of all libraries. (18579).

NN

  • nn.MultiheadedAttention: new module implementing MultiheadedAttention from Attention Is All You Need. (18334).
  • nn.functional.interpolate: added support for bicubic. (9849).
  • nn.SyncBatchNorm: support synchronous Batch Normalization. (14267).
  • nn.Conv: added support for Circular Padding via mode='circular'. (17240).
  • nn.EmbeddingBag: now supports trainable per_sample_weights. (18799).
  • nn.EmbeddingBag: add support for from_pretrained method, as in nn.Embedding. (15273).
  • RNNs: automatically handle unsorted variable-length sequences via enforce_sorted. (15225).
  • nn.Identity: new module for easier model surgery. (19249).

Tensors / dtypes

  • torch.bool: added support for torch.bool dtype and Tensors with that dtype (1-byte storage). NumPy conversion is supported, but operations are currently limited. (16810).

Optim

  • optim.lr_scheduler.CyclicLR: Support for Cyclical Learning Rate and Momentum. (18001).
  • optim.lr_scheduler.CosineAnnealingWarmRestarts: new scheduler: Stochastic Gradient Descent with Warm Restarts). (17226).
  • Support multiple simultaneous LR schedulers. (14010)

Distributions

  • torch.distributions: now support multiple inheritance. (16772).

Samplers

  • quasirandom.SobolEngine: new sampler. (10505).

DistributedDataParallel

  • nn.parallel.DistributedDataParallel: now supports modules with unused parameters (e.g. control flow, like adaptive softmax, etc). (18251, 18953).

TorchScript and Tracer

  • Allow early returns from if-statements. (#154463)
  • Add an @ignore annotation, which statically tells the TorchScript compiler to ignore the Python function. (#16055)
  • Simple for...in loops on lists. (#16726)
  • Ellipses (...) in Tensor indexing. (#17763)
  • None in Tensor indexing. (#18615)
  • Support for basic list comprehensions. (#17267)
  • Add implicit unwrapping of optionals on if foo is not None. (#15587)
  • Tensors, ints, and floats will once again be implicitly cast to bool if used in a conditional. (#18755).
  • Implement to(), cpu(), and cuda() on ScriptModules. (#15340 , #15904)
  • Add support for various methods on lists: (clear(), pop(), reverse(), copy() , extend(),index(), count(), insert(), remove() ).
  • Add support for sort() on lists of specialized type (Tensors, int, float, bool). (#19572)
  • Add support for various methods on strings: (index(), slice(), len())
  • Support Tensor.to() in TorchScript. ( #15976 )
  • Support for Torch.tensor() in TorchScript. (#14913, #19445)
  • Support for torch.manual_seed() in TorchScript. (#19510)
  • Support for nn.LSTM in TorchScript. (#15744)
  • Support for nn.init in TorchScript. (#19640)
  • Add hash() builtin. (#18258)
  • Add min() and max() builtins for numerical types. (#15680)
  • Add isinstance() builtin, which performs a static type check. (#15076)
  • Add train() / eval() / is_training() to C++ ScriptModule API. (#16044)
  • Allow List arguments to Python functions called from TorchScript. (#15721)
  • Allow using std::vector and std::unordered_map as arguments to custom operators. (#17587)
  • Tracer: now allows passing static dicts and lists as trace inputs. (#18092, #19580)
  • Allow generic containers as ScriptModule inputs. (#16482)
  • Allow nn.Sequential in ModuleList. (#16882)

Experimental Features

  • [Quantization] (API unstable): added limited support for quantized datatypes via torch.qint8 dtype, torch.quantize_linear conversion function. (18230).
  • [MKLDNN tensor] (API unstable): Added limited (opaque) support for MKLDNN tensors via Tensor.to_mkldnn(); operators are currently limited to ResNext101 operators. (17748).

另外,日志里还有关于【Improvements】【Bug Fixes】【Deprecations】【Performance】【Documentation】【ONNX】的说明。

下边是已经修复了的比较严重的一些Bug。

  • torch.prod: correct erroneous calculation on large tensors. (15653).
  • torch.mean (and other reductions): fix incorrect calculation on CUDA on large inputs. (16023).
  • nn.Conv: correctly handle non-contiguous inputs on MKLDNN convolution codepath. (16300).
  • Tensor.eq_: Fix erroneous calculation. (15475).
  • torch.mean: Fix fp16 output calculation. (14878).
  • nn.PoissonNLLLoss: Properly handle reduction=None. (17358).
  • [JIT] Fix bug where custom ops could get optimized out if their outputs weren't used. (#18711).
  • [JIT] Fix bug where the model serializer would accidentally reorder statements. (#17557).

下边是挑出的几个比较显著的【Performance】。

  • nn.BatchNorm CPU inference speed increased up to ~19x.(19152).
  • nn.AdaptiveAvgPool: speed up common-case of size=1 output by ~30x. (17011).
  • nn.EmbeddingBag CPU performance increased by ~4x. (19329).
  • Tensor.copy_: sped up larger tensor copy ~2-3x, small regression in small tensor copy. (18618).
  • torch.nonzero: is now ~2x faster than numpy on CPU. (15190)
  • Improve caching allocator for Pascal and newer GPUs; 10-20% better memory utilization on Mask-RCNN. (17120).
  • reduction functions: Speed up some large Tensor cases by 50-80%. (17428).
  • [JIT] Graph fuser: better fusion for backwards graphs in the presence of broadcasting. (#14957)
  • [JIT] Graph fuser: batch_norm fusion for inference. (#15146)
  • [JIT] Graph fuser: layer_norm fusion for inference. (#18266)

你可能感兴趣的:(pytorch,gather,pytorch,版本,pytorch版本)