logistic模型python_python编写Logistic逻辑回归

用一条直线对数据进行拟合的过程称为回归。逻辑回归分类的思想是:根据现有数据对分类边界线建立回归公式。

公式表示为:

一、梯度上升法

每次迭代所有的数据都参与计算。

for 循环次数:

训练

代码如下:

import numpy as np

import matplotlib.pyplot as plt

def loadData():

labelVec = []

dataMat = []

with open('testSet.txt') as f:

for line in f.readlines():

dataMat.append([1.0,line.strip().split()[0],line.strip().split()[1]])

labelVec.append(line.strip().split()[2])

return dataMat,labelVec

def Sigmoid(inX):

return 1/(1+np.exp(-inX))

def trainLR(dataMat,labelVec):

dataMatrix = np.mat(dataMat).astype(np.float64)

lableMatrix = np.mat(labelVec).T.astype(np.float64)

m,n = dataMatrix.shape

w = np.ones((n,1))

alpha = 0.001

for i in range(500):

predict = Sigmoid(dataMatrix*w)

error = predict-lableMatrix

w = w - alpha*dataMatrix.T*error

return w

def plotBestFit(wei,data,label):

if type(wei).__name__ == 'ndarray':

weights = wei

else:

weights = wei.getA()

fig = plt.figure(0)

ax = fig.add_subplot(111)

xxx = np.arange(-3,3,0.1)

yyy = - weights[0]/weights[2] - weights[1]/weights[2]*xxx

ax.plot(xxx,yyy)

cord1 = []

cord0 = []

for i in range(len(label)):

if label[i] == 1:

cord1.append(data[i][1:3])

else:

cord0.append(data[i][1:3])

cord1 = np.array(cord1)

cord0 = np.array(cord0)

ax.scatter(cord1[:,0],cord1[:,1],c='red')

ax.scatter(cord0[:,0],cord0[:,1],c='green')

plt.show()

if __name__ == "__main__":

data,label = loadData()

data = np.array(data).astype(np.float64)

label = [int(item) for item in label]

weight = trainLR(data,label)

plotBestFit(weight,data,label)

二、随机梯度上升法

1.学习参数随迭代次数调整,可以缓解参数的高频波动。

2.随机选取样本来更新回归参数,可以减少周期性的波动。

for 循环次数:

for 样本数量:

更新学习速率

随机选取样本

训练

在样本集中删除该样本

代码如下:

import numpy as np

import matplotlib.pyplot as plt

def loadData():

labelVec = []

dataMat = []

with open('testSet.txt') as f:

for line in f.readlines():

dataMat.append([1.0,line.strip().split()[0],line.strip().split()[1]])

labelVec.append(line.strip().split()[2])

return dataMat,labelVec

def Sigmoid(inX):

return 1/(1+np.exp(-inX))

def plotBestFit(wei,data,label):

if type(wei).__name__ == 'ndarray':

weights = wei

else:

weights = wei.getA()

fig = plt.figure(0)

ax = fig.add_subplot(111)

xxx = np.arange(-3,3,0.1)

yyy = - weights[0]/weights[2] - weights[1]/weights[2]*xxx

ax.plot(xxx,yyy)

cord1 = []

cord0 = []

for i in range(len(label)):

if label[i] == 1:

cord1.append(data[i][1:3])

else:

cord0.append(data[i][1:3])

cord1 = np.array(cord1)

cord0 = np.array(cord0)

ax.scatter(cord1[:,0],cord1[:,1],c='red')

ax.scatter(cord0[:,0],cord0[:,1],c='green')

plt.show()

def stocGradAscent(dataMat,labelVec,trainLoop):

m,n = np.shape(dataMat)

w = np.ones((n,1))

for j in range(trainLoop):

dataIndex = range(m)

for i in range(m):

alpha = 4/(i+j+1) + 0.01

randIndex = int(np.random.uniform(0,len(dataIndex)))

predict = Sigmoid(np.dot(dataMat[dataIndex[randIndex]],w))

error = predict - labelVec[dataIndex[randIndex]]

w = w - alpha*error*dataMat[dataIndex[randIndex]].reshape(n,1)

np.delete(dataIndex,randIndex,0)

return w

if __name__ == "__main__":

data,label = loadData()

data = np.array(data).astype(np.float64)

label = [int(item) for item in label]

weight = stocGradAscent(data,label,300)

plotBestFit(weight,data,label)

三、编程技巧

1.字符串提取

将字符串中的'\n', ‘\r', ‘\t', ' ‘去除,按空格符划分。

string.strip().split()

2.判断类型

if type(secondTree[value]).__name__ == 'dict':

3.乘法

numpy两个矩阵类型的向量相乘,结果还是一个矩阵

c = a*b

c

Out[66]: matrix([[ 6.830482]])

两个向量类型的向量相乘,结果为一个二维数组

b

Out[80]:

array([[ 1.],

[ 1.],

[ 1.]])

a

Out[81]: array([1, 2, 3])

a*b

Out[82]:

array([[ 1., 2., 3.],

[ 1., 2., 3.],

[ 1., 2., 3.]])

b*a

Out[83]:

array([[ 1., 2., 3.],

[ 1., 2., 3.],

[ 1., 2., 3.]])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

本文标题: python编写Logistic逻辑回归

本文地址: http://www.cppcns.com/jiaoben/python/215351.html

你可能感兴趣的:(logistic模型python_python编写Logistic逻辑回归)