以下是实验所用的数据表,需要数据表练习的请留言
本文的所有试验均基于jupyter notebook
import pandas as pd
#读取csv数据文件
food_info = pd.read_csv('food_info.csv')
#查看数据类型 DataFrame数据类型是pandas的核心数据类型之一
print(type(food_info))
#查看数据
food_info[0:10] #仅显示前10行
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | BUTTER WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 51.368 | 21.021 | 3.043 | 215.0 |
1 | 1002 | BUTTER WHIPPED WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 50.489 | 23.426 | 3.012 | 219.0 |
2 | 1003 | BUTTER OIL ANHYDROUS | 0.24 | 876 | 0.28 | 99.48 | 0.00 | 0.00 | 0.0 | 0.00 | ... | 3069.0 | 840.0 | 2.80 | 1.8 | 73.0 | 8.6 | 61.924 | 28.732 | 3.694 | 256.0 |
3 | 1004 | CHEESE BLUE | 42.41 | 353 | 21.40 | 28.74 | 5.11 | 2.34 | 0.0 | 0.50 | ... | 721.0 | 198.0 | 0.25 | 0.5 | 21.0 | 2.4 | 18.669 | 7.778 | 0.800 | 75.0 |
4 | 1005 | CHEESE BRICK | 41.11 | 371 | 23.24 | 29.68 | 3.18 | 2.79 | 0.0 | 0.51 | ... | 1080.0 | 292.0 | 0.26 | 0.5 | 22.0 | 2.5 | 18.764 | 8.598 | 0.784 | 94.0 |
5 | 1006 | CHEESE BRIE | 48.42 | 334 | 20.75 | 27.68 | 2.70 | 0.45 | 0.0 | 0.45 | ... | 592.0 | 174.0 | 0.24 | 0.5 | 20.0 | 2.3 | 17.410 | 8.013 | 0.826 | 100.0 |
6 | 1007 | CHEESE CAMEMBERT | 51.80 | 300 | 19.80 | 24.26 | 3.68 | 0.46 | 0.0 | 0.46 | ... | 820.0 | 241.0 | 0.21 | 0.4 | 18.0 | 2.0 | 15.259 | 7.023 | 0.724 | 72.0 |
7 | 1008 | CHEESE CARAWAY | 39.28 | 376 | 25.18 | 29.20 | 3.28 | 3.06 | 0.0 | NaN | ... | 1054.0 | 271.0 | NaN | NaN | NaN | NaN | 18.584 | 8.275 | 0.830 | 93.0 |
8 | 1009 | CHEESE CHEDDAR | 37.10 | 406 | 24.04 | 33.82 | 3.71 | 1.33 | 0.0 | 0.28 | ... | 994.0 | 263.0 | 0.78 | 0.6 | 24.0 | 2.9 | 19.368 | 8.428 | 1.433 | 102.0 |
9 | 1010 | CHEESE CHESHIRE | 37.65 | 387 | 23.37 | 30.60 | 3.60 | 4.78 | 0.0 | NaN | ... | 985.0 | 233.0 | NaN | NaN | NaN | NaN | 19.475 | 8.671 | 0.870 | 103.0 |
10 rows × 36 columns
print(food_info.dtypes)
#返回每一列的数据类型 最常见的三种int64 float64 object(即string)
NDB_No int64
Shrt_Desc object
Water_(g) float64
Energ_Kcal int64
Protein_(g) float64
Lipid_Tot_(g) float64
Ash_(g) float64
Carbohydrt_(g) float64
Fiber_TD_(g) float64
Sugar_Tot_(g) float64
Calcium_(mg) float64
Iron_(mg) float64
Magnesium_(mg) float64
Phosphorus_(mg) float64
Potassium_(mg) float64
Sodium_(mg) float64
Zinc_(mg) float64
Copper_(mg) float64
Manganese_(mg) float64
Selenium_(mcg) float64
Vit_C_(mg) float64
Thiamin_(mg) float64
Riboflavin_(mg) float64
Niacin_(mg) float64
Vit_B6_(mg) float64
Vit_B12_(mcg) float64
Vit_A_IU float64
Vit_A_RAE float64
Vit_E_(mg) float64
Vit_D_mcg float64
Vit_D_IU float64
Vit_K_(mcg) float64
FA_Sat_(g) float64
FA_Mono_(g) float64
FA_Poly_(g) float64
Cholestrl_(mg) float64
dtype: object
#显示表格
food_info.head() #默认只显示前5行
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | BUTTER WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 51.368 | 21.021 | 3.043 | 215.0 |
1 | 1002 | BUTTER WHIPPED WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 50.489 | 23.426 | 3.012 | 219.0 |
2 | 1003 | BUTTER OIL ANHYDROUS | 0.24 | 876 | 0.28 | 99.48 | 0.00 | 0.00 | 0.0 | 0.00 | ... | 3069.0 | 840.0 | 2.80 | 1.8 | 73.0 | 8.6 | 61.924 | 28.732 | 3.694 | 256.0 |
3 | 1004 | CHEESE BLUE | 42.41 | 353 | 21.40 | 28.74 | 5.11 | 2.34 | 0.0 | 0.50 | ... | 721.0 | 198.0 | 0.25 | 0.5 | 21.0 | 2.4 | 18.669 | 7.778 | 0.800 | 75.0 |
4 | 1005 | CHEESE BRICK | 41.11 | 371 | 23.24 | 29.68 | 3.18 | 2.79 | 0.0 | 0.51 | ... | 1080.0 | 292.0 | 0.26 | 0.5 | 22.0 | 2.5 | 18.764 | 8.598 | 0.784 | 94.0 |
5 rows × 36 columns
#当需要显示别的数目的行数时可以给head传参
food_info.head(2) #显示两行
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | BUTTER WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 51.368 | 21.021 | 3.043 | 215.0 |
1 | 1002 | BUTTER WHIPPED WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 50.489 | 23.426 | 3.012 | 219.0 |
2 rows × 36 columns
#可以查看开头几行,当然也能查看尾几行
food_info.tail()#默认5行
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8613 | 83110 | MACKEREL SALTED | 43.00 | 305 | 18.50 | 25.10 | 13.40 | 0.00 | 0.0 | 0.0 | ... | 157.0 | 47.0 | 2.38 | 25.2 | 1006.0 | 7.8 | 7.148 | 8.320 | 6.210 | 95.0 |
8614 | 90240 | SCALLOP (BAY&SEA) CKD STMD | 70.25 | 111 | 20.54 | 0.84 | 2.97 | 5.41 | 0.0 | 0.0 | ... | 5.0 | 2.0 | 0.00 | 0.0 | 2.0 | 0.0 | 0.218 | 0.082 | 0.222 | 41.0 |
8615 | 90480 | SYRUP CANE | 26.00 | 269 | 0.00 | 0.00 | 0.86 | 73.14 | 0.0 | 73.2 | ... | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 | 0.000 | 0.000 | 0.000 | 0.0 |
8616 | 90560 | SNAIL RAW | 79.20 | 90 | 16.10 | 1.40 | 1.30 | 2.00 | 0.0 | 0.0 | ... | 100.0 | 30.0 | 5.00 | 0.0 | 0.0 | 0.1 | 0.361 | 0.259 | 0.252 | 50.0 |
8617 | 93600 | TURTLE GREEN RAW | 78.50 | 89 | 19.80 | 0.50 | 1.20 | 0.00 | 0.0 | 0.0 | ... | 100.0 | 30.0 | 0.50 | 0.0 | 0.0 | 0.1 | 0.127 | 0.088 | 0.170 | 50.0 |
5 rows × 36 columns
food_info.tail(2)#只显示最后两行
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8616 | 90560 | SNAIL RAW | 79.2 | 90 | 16.1 | 1.4 | 1.3 | 2.0 | 0.0 | 0.0 | ... | 100.0 | 30.0 | 5.0 | 0.0 | 0.0 | 0.1 | 0.361 | 0.259 | 0.252 | 50.0 |
8617 | 93600 | TURTLE GREEN RAW | 78.5 | 89 | 19.8 | 0.5 | 1.2 | 0.0 | 0.0 | 0.0 | ... | 100.0 | 30.0 | 0.5 | 0.0 | 0.0 | 0.1 | 0.127 | 0.088 | 0.170 | 50.0 |
2 rows × 36 columns
#显示列名
print(food_info.columns,type(food_info.columns))
Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)',
'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)',
'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)',
'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)',
'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)',
'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)',
'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg',
'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)',
'Cholestrl_(mg)'],
dtype='object')
#查看当前数据的结构多少行多少列
print(food_info.shape)
(8618, 36)
#pands读入的csv文件也可以进行索引和切片但是要通过一个loc方法
food_info.loc[0] #只显示第一行也就是csv文件中的列名那一行
NDB_No 1001
Shrt_Desc BUTTER WITH SALT
Water_(g) 15.87
Energ_Kcal 717
Protein_(g) 0.85
Lipid_Tot_(g) 81.11
Ash_(g) 2.11
Carbohydrt_(g) 0.06
Fiber_TD_(g) 0
Sugar_Tot_(g) 0.06
Calcium_(mg) 24
Iron_(mg) 0.02
Magnesium_(mg) 2
Phosphorus_(mg) 24
Potassium_(mg) 24
Sodium_(mg) 643
Zinc_(mg) 0.09
Copper_(mg) 0
Manganese_(mg) 0
Selenium_(mcg) 1
Vit_C_(mg) 0
Thiamin_(mg) 0.005
Riboflavin_(mg) 0.034
Niacin_(mg) 0.042
Vit_B6_(mg) 0.003
Vit_B12_(mcg) 0.17
Vit_A_IU 2499
Vit_A_RAE 684
Vit_E_(mg) 2.32
Vit_D_mcg 1.5
Vit_D_IU 60
Vit_K_(mcg) 7
FA_Sat_(g) 51.368
FA_Mono_(g) 21.021
FA_Poly_(g) 3.043
Cholestrl_(mg) 215
Name: 0, dtype: object
#对csv文件数据的切片
food_info.loc[0:5] #查看前5行与food.head显示的一致
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | BUTTER WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 51.368 | 21.021 | 3.043 | 215.0 |
1 | 1002 | BUTTER WHIPPED WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 50.489 | 23.426 | 3.012 | 219.0 |
2 | 1003 | BUTTER OIL ANHYDROUS | 0.24 | 876 | 0.28 | 99.48 | 0.00 | 0.00 | 0.0 | 0.00 | ... | 3069.0 | 840.0 | 2.80 | 1.8 | 73.0 | 8.6 | 61.924 | 28.732 | 3.694 | 256.0 |
3 | 1004 | CHEESE BLUE | 42.41 | 353 | 21.40 | 28.74 | 5.11 | 2.34 | 0.0 | 0.50 | ... | 721.0 | 198.0 | 0.25 | 0.5 | 21.0 | 2.4 | 18.669 | 7.778 | 0.800 | 75.0 |
4 | 1005 | CHEESE BRICK | 41.11 | 371 | 23.24 | 29.68 | 3.18 | 2.79 | 0.0 | 0.51 | ... | 1080.0 | 292.0 | 0.26 | 0.5 | 22.0 | 2.5 | 18.764 | 8.598 | 0.784 | 94.0 |
5 | 1006 | CHEESE BRIE | 48.42 | 334 | 20.75 | 27.68 | 2.70 | 0.45 | 0.0 | 0.45 | ... | 592.0 | 174.0 | 0.24 | 0.5 | 20.0 | 2.3 | 17.410 | 8.013 | 0.826 | 100.0 |
6 rows × 36 columns
food_info.loc[0:9:2] #类似Python中的切片,food_info.loc[开始,结束,步长],这里显示前10行的偶数行
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1001 | BUTTER WITH SALT | 15.87 | 717 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | ... | 2499.0 | 684.0 | 2.32 | 1.5 | 60.0 | 7.0 | 51.368 | 21.021 | 3.043 | 215.0 |
2 | 1003 | BUTTER OIL ANHYDROUS | 0.24 | 876 | 0.28 | 99.48 | 0.00 | 0.00 | 0.0 | 0.00 | ... | 3069.0 | 840.0 | 2.80 | 1.8 | 73.0 | 8.6 | 61.924 | 28.732 | 3.694 | 256.0 |
4 | 1005 | CHEESE BRICK | 41.11 | 371 | 23.24 | 29.68 | 3.18 | 2.79 | 0.0 | 0.51 | ... | 1080.0 | 292.0 | 0.26 | 0.5 | 22.0 | 2.5 | 18.764 | 8.598 | 0.784 | 94.0 |
6 | 1007 | CHEESE CAMEMBERT | 51.80 | 300 | 19.80 | 24.26 | 3.68 | 0.46 | 0.0 | 0.46 | ... | 820.0 | 241.0 | 0.21 | 0.4 | 18.0 | 2.0 | 15.259 | 7.023 | 0.724 | 72.0 |
8 | 1009 | CHEESE CHEDDAR | 37.10 | 406 | 24.04 | 33.82 | 3.71 | 1.33 | 0.0 | 0.28 | ... | 994.0 | 263.0 | 0.78 | 0.6 | 24.0 | 2.9 | 19.368 | 8.428 | 1.433 | 102.0 |
5 rows × 36 columns
#通过索引可以按行取数据,当然也可以通过列索引来取整列的数据
food_info['NDB_No'][0:5] #只显示NDB_No这一列的前5条数据
0 1001
1 1002
2 1003
3 1004
4 1005
Name: NDB_No, dtype: int64
#现在有一个需求要获取所有以g结尾的列名
columns = food_info.columns #这里得到的columns并不是list而是可以使用tolist方法转为list类型
print(columns.tolist(),type(columns.tolist()))
print('*'*100)
g_columns = []
for this_column in columns:
if this_column.endswith('(g)'):
g_columns.append(this_column)
print(g_columns)
food_info[g_columns][0:5] #所有以g结尾的有29列 只显示前5行
['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)', 'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)', 'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)', 'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)', 'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)', 'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)', 'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg', 'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)', 'Cholestrl_(mg)']
****************************************************************************************************
['Water_(g)', 'Protein_(g)', 'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)', 'Sugar_Tot_(g)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)']
Water_(g) | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 315.87 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | 51.368 | 21.021 | 3.043 |
1 | 315.87 | 0.85 | 81.11 | 2.11 | 0.06 | 0.0 | 0.06 | 50.489 | 23.426 | 3.012 |
2 | 300.24 | 0.28 | 99.48 | 0.00 | 0.00 | 0.0 | 0.00 | 61.924 | 28.732 | 3.694 |
3 | 342.41 | 21.40 | 28.74 | 5.11 | 2.34 | 0.0 | 0.50 | 18.669 | 7.778 | 0.800 |
4 | 341.11 | 23.24 | 29.68 | 3.18 | 2.79 | 0.0 | 0.51 | 18.764 | 8.598 | 0.784 |
#针对数据的基本数学运算 +|-|×|÷ 与常数运算每一个值与常数运算,列与列运算,列的对应位置运算
#将Iron_(mg)这一列的数据转换成以g为单位
(food_info['Iron_(mg)']/1000)[0:5] #只显示前五条数据
0 0.00002
1 0.00016
2 0.00000
3 0.00031
4 0.00043
Name: Iron_(mg), dtype: float64
#将Protein_(g)这一列的值全部加100
food_info['Protein_(g)'] += 100
food_info['Protein_(g)'][0:5] #只显示前五行
0 100.85
1 100.85
2 100.28
3 121.40
4 123.24
Name: Protein_(g), dtype: float64
#将Lipid_Tot_(g)这一列的值全部减去10
food_info['Lipid_Tot_(g)'] -= 10
food_info['Lipid_Tot_(g)'][0:5] #只显示前五行
0 71.11
1 71.11
2 89.48
3 18.74
4 19.68
Name: Lipid_Tot_(g), dtype: float64
#将water_(g)与Protein_(g)相乘
new_lipid = food_info['Lipid_Tot_(g)'] * food_info['Carbohydrt_(g)']
new_lipid[0:5]
0 4.2666
1 4.2666
2 0.0000
3 43.8516
4 54.9072
dtype: float64
food_info.sort_values('Water_(g)',inplace=True) #inplace = True不生成新的dataframe
food_info.sort_values('Water_(g)',inplace=False)[0:5]#inplace = False,默认为false生成新的dataframe只显示前5行
NDB_No | Shrt_Desc | Water_(g) | Energ_Kcal | Protein_(g) | Lipid_Tot_(g) | Ash_(g) | Carbohydrt_(g) | Fiber_TD_(g) | Sugar_Tot_(g) | ... | Vit_A_IU | Vit_A_RAE | Vit_E_(mg) | Vit_D_mcg | Vit_D_IU | Vit_K_(mcg) | FA_Sat_(g) | FA_Mono_(g) | FA_Poly_(g) | Cholestrl_(mg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
676 | 4544 | SHORTENING HOUSEHOLD LARD&VEG OIL | 400.0 | 900 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 21.5 | 40.3 | 44.4 | 10.9 | 56.0 |
664 | 4520 | FAT MUTTON TALLOW | 400.0 | 902 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 2.8 | 0.7 | 28.0 | 0.0 | 47.3 | 40.6 | 7.8 | 102.0 |
665 | 4528 | OIL WALNUT | 400.0 | 884 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 15.0 | 9.1 | 22.8 | 63.3 | 0.0 |
666 | 4529 | OIL ALMOND | 400.0 | 884 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 39.2 | 0.0 | 0.0 | 7.0 | 8.2 | 69.9 | 17.4 | 0.0 |
667 | 4530 | OIL APRICOT KERNEL | 400.0 | 884 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 4.0 | NaN | NaN | NaN | 6.3 | 60.0 | 29.3 | 0.0 |
5 rows × 36 columns
food_info['Water_(g)'].sort_index(ascending=False)[0:5] #对某一列索引值的排序 只显示前五行
8617 478.50
8616 479.20
8615 426.00
8614 470.25
8613 443.00
Name: Water_(g), dtype: float64