数据是来自凯斯西储大学(CWRU)滚动轴承数据中心.
官方网站数据下载地址: https://csegroups.case.edu/bearingdatacenter/pages/download-data-file
CWRU轴承中心数据采集系统如上图所示。本试验的试验对象为图中的驱动端轴承,被诊断的轴承型号为深沟球轴承SKF6205,有故障的轴承由电火花加工制作而成,系统的采样频率为12kHz。被诊断的轴承一共有3种缺陷位置,分别是滚动体损伤,外圈损伤与内圈损伤,损伤直径的大小分别为包括0.007inch,0.014inch和0.021inch,共计9种损伤状态。试验中,每次使用2048个数据点进行诊断。为了便于训练卷积神经网络,对每段信号x均做归一化处理,归一化处理的公式如下式
试验一共准备了4个数据集,如表2-3所示。数据集A、B和C分别是在负载为1hp、2hp和3hp下的数据集。每个数据集各包括6600个训练样本与250个测试样本,其中训练样本采用数据集增强技术,测试样本之间无重叠。数据集D是数据集A、B和C的并集,即包括了3种负载状态,一共有19800个训练样本与750个测试样本。
本项目数据集下载地址: https://download.csdn.net/download/qq_41865229/85200778
目前常用的二维卷积神经网络,例如VGGnet、ResNet、以及谷歌的Inception V4,这三种网络结构均含有堆叠式的3×3的卷积核。这样既可以加深网络深度,也可以实现以较少的参数,获取较大的感受野,从而抑制过拟合。然而,对于一维振动信号,两层3×1卷积的结构,以6个权值为代价,仅仅获取了5×1的感受野,反而将上述优势变成了劣势,因此视觉领域的网络结构不适用于轴承故障诊断领域。
本节针对一维振动信号的特点,设计出名为“第一层宽卷积核深度卷积神经网WDCNN(Deep Convolutional Neural Networks with Wide First-layer Kernel)模型,其结构特点是第一层为大卷积核,之后卷积层全部为3×1的小卷积核。
WDCNN的第一层为大卷积核,目的是为了提取短时特征,其作用与短时傅里叶变换类似。不同点在于,短时傅里叶变换的窗口函数是正弦函数,而WDCNN的第一层大卷积核,是通过优化算法训练得到,其优点是可以自动学习面向诊断的特征,而自动去除对诊断没有帮助的特征。
为了增强WDCNN的表达能力,除第一层外,其与卷积层的卷积核大小均为3×1。由于卷积核参数少,这样有利于加深网络,同时可以抑制过拟合。每层卷积操作之后均进行批量归一化处理BN(Batch Normalization),然后进行2×1的最大值池化,WDCNN的结构图如下所示。
WDCNN结构图:
试验中使用的WDCNN模型参数如下示。该WDCNN模型共有5层卷积与池化层,第一层卷积核大小为64×1,除第一层外,其余卷积核的大小均为3×1。隐含层神经元个数为100,Softmax层共有10个输出,对应10种轴承状态。
数据集制作代码 cwru_preprocess.py
from scipy.io import loadmat
import numpy as np
import os
from sklearn import preprocessing # 0-1编码
from sklearn.model_selection import StratifiedShuffleSplit # 随机划分,保证每一类比例相同
import tensorflow as tf
def prepro(d_path, length=864, number=1000, normal=True, rate=[0.5, 0.25, 0.25], enc=True, enc_step=28):
"""对数据进行预处理,返回train_X, train_Y, valid_X, valid_Y, test_X, test_Y样本.
:param d_path: 源数据地址
:param length: 信号长度,默认2个信号周期,864
:param number: 每种信号个数,总共10类,默认每个类别1000个数据
:param normal: 是否标准化.True,Fales.默认True
:param rate: 训练集/验证集/测试集比例.默认[0.5,0.25,0.25],相加要等于1
:param enc: 训练集、验证集是否采用数据增强.Bool,默认True
:param enc_step: 增强数据集采样顺延间隔
:return: Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y
```
import preprocess.preprocess_nonoise as pre
train_X, train_Y, valid_X, valid_Y, test_X, test_Y = pre.prepro(d_path=path,
length=864,
number=1000,
normal=False,
rate=[0.5, 0.25, 0.25],
enc=True,
enc_step=28)
```
"""
# 获得该文件夹下所有.mat文件名
filenames = os.listdir(d_path)
def capture(original_path):
"""读取mat文件,返回字典
:param original_path: 读取路径
:return: 数据字典
"""
files = {}
for i in filenames:
# 文件路径
file_path = os.path.join(d_path, i)
file = loadmat(file_path)
file_keys = file.keys()
for key in file_keys:
if 'DE' in key:
files[i] = file[key].ravel()
return files
def slice_enc(data, slice_rate=rate[1] + rate[2]):
"""将数据切分为前面多少比例,后面多少比例.
:param data: 单挑数据
:param slice_rate: 验证集以及测试集所占的比例
:return: 切分好的数据
"""
keys = data.keys()
Train_Samples = {}
Test_Samples = {}
for i in keys:
slice_data = data[i]
all_lenght = len(slice_data)
end_index = int(all_lenght * (1 - slice_rate))
samp_train = int(number * (1 - slice_rate)) # 700
Train_sample = []
Test_Sample = []
if enc:
enc_time = length // enc_step
samp_step = 0 # 用来计数Train采样次数
for j in range(samp_train):
random_start = np.random.randint(low=0, high=(end_index - 2 * length))
label = 0
for h in range(enc_time):
samp_step += 1
random_start += enc_step
sample = slice_data[random_start: random_start + length]
Train_sample.append(sample)
if samp_step == samp_train:
label = 1
break
if label:
break
else:
for j in range(samp_train):
random_start = np.random.randint(low=0, high=(end_index - length))
sample = slice_data[random_start:random_start + length]
Train_sample.append(sample)
# 抓取测试数据
for h in range(number - samp_train):
random_start = np.random.randint(low=end_index, high=(all_lenght - length))
sample = slice_data[random_start:random_start + length]
Test_Sample.append(sample)
Train_Samples[i] = Train_sample
Test_Samples[i] = Test_Sample
return Train_Samples, Test_Samples
# 仅抽样完成,打标签
def add_labels(train_test):
X = []
Y = []
label = 0
for i in filenames:
x = train_test[i]
X += x
lenx = len(x)
Y += [label] * lenx
label += 1
return X, Y
# one-hot编码
def one_hot(Train_Y, Test_Y):
Train_Y = np.array(Train_Y).reshape([-1, 1])
Test_Y = np.array(Test_Y).reshape([-1, 1])
Encoder = preprocessing.OneHotEncoder()
Encoder.fit(Train_Y)
Train_Y = Encoder.transform(Train_Y).toarray()
Test_Y = Encoder.transform(Test_Y).toarray()
Train_Y = np.asarray(Train_Y, dtype=np.int32)
Test_Y = np.asarray(Test_Y, dtype=np.int32)
return Train_Y, Test_Y
def scalar_stand(Train_X, Test_X):
# 用训练集标准差标准化训练集以及测试集
scalar = preprocessing.StandardScaler().fit(Train_X)
Train_X = scalar.transform(Train_X)
Test_X = scalar.transform(Test_X)
return Train_X, Test_X
def valid_test_slice(Test_X, Test_Y):
test_size = rate[2] / (rate[1] + rate[2])
ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size)
for train_index, test_index in ss.split(Test_X, Test_Y):
X_valid, X_test = Test_X[train_index], Test_X[test_index]
Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index]
return X_valid, Y_valid, X_test, Y_test
# 从所有.mat文件中读取出数据的字典
data = capture(original_path=d_path)
# 将数据切分为训练集、测试集
train, test = slice_enc(data)
# 为训练集制作标签,返回X,Y
Train_X, Train_Y = add_labels(train)
# 为测试集制作标签,返回X,Y
Test_X, Test_Y = add_labels(test)
# 为训练集Y/测试集One-hot标签
Train_Y, Test_Y = one_hot(Train_Y, Test_Y)
# 训练数据/测试数据 是否标准化.
if normal:
Train_X, Test_X = scalar_stand(Train_X, Test_X)
else:
# 需要做一个数据转换,转换成np格式.
Train_X = np.asarray(Train_X)
Test_X = np.asarray(Test_X)
# 将测试集切分为验证集合和测试集.
Valid_X, Valid_Y, Test_X, Test_Y = valid_test_slice(Test_X, Test_Y)
return Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y
if __name__ == "__main__":
path = r'cwru_data\0HP'
train_X, train_Y, valid_X, valid_Y, test_X, test_Y = prepro(d_path=path,
length=864,
number=1000,
normal=False,
rate=[0.5, 0.25, 0.25],
enc=False,
enc_step=28)
print(train_X[0:5])
print(train_Y[0:5])
模型训练代码 cwru_train.py
import os
import matplotlib.pyplot as plt
import numpy as np
from tensorflow_core.python.keras import Model
from tensorflow_core.python.keras.layers import Conv1D, Activation, BatchNormalization, MaxPooling1D, Flatten, Dense
import tensorflow as tf
from tensorflow_core.python.keras.regularizers import l2
import cwru_preprocess as preprocess
# 训练参数
batch_size = 128
epochs = 20
num_classes = 10
length = 2048
BatchNorm = True # 是否批量归一化
number = 1000 # 每类样本的数量
normal = True # 是否标准化
rate = [0.7,0.2,0.1] # 测试集验证集划分比例
path = r'cwru_data\0HP'
x_train, y_train, x_valid, y_valid, x_test, y_test = preprocess.prepro(d_path=path,length=length,
number=number,
normal=normal,
rate=rate,
enc=True, enc_step=28)
# 输入卷积的时候还需要修改一下,增加通道数目
x_train, x_valid, x_test = x_train[:,:,np.newaxis], x_valid[:,:,np.newaxis], x_test[:,:,np.newaxis] #[:,:,np.newaxis]是什么意思
# 输入数据的维度
input_shape =x_train.shape[1:]
print('训练样本维度:', x_train.shape)
print('训练样本个数', x_train.shape[0])
print('验证样本的维度', x_valid.shape)
print('验证样本个数', x_valid.shape[0])
print('测试样本的维度', x_test.shape)
print('测试样本个数', x_test.shape[0])
print('测试标签的维度', y_test.shape)
class CwruModel(Model):
def __init__(self): #构造函数
super(CwruModel, self).__init__()
#第1层卷积
self.c1 = Conv1D(filters=16, kernel_size=64, strides=16, padding='same', kernel_regularizer=l2(1e-4), input_shape = input_shape)#卷积层
self.b1 = BatchNormalization() # BN层
self.a1 = Activation('relu') # 激活层
self.p1 = MaxPooling1D(pool_size=2) #池化层
#第2层卷积
self.c2 = Conv1D(filters=32, kernel_size=3, strides=1, padding='same')
self.b2 = BatchNormalization()
self.a2 = Activation('relu') # 激活层
self.p2 = MaxPooling1D(pool_size=2, padding='valid')
#第3层卷积
self.c3 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
self.b3 = BatchNormalization()
self.a3 = Activation('relu') # 激活层
self.p3 = MaxPooling1D(pool_size=2, padding='valid')
#第4层卷积
self.c4 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
self.b4 = BatchNormalization()
self.a4 = Activation('relu') # 激活层
self.p4 = MaxPooling1D(pool_size=2, padding='valid')
#第5层卷积
self.c5 = Conv1D(filters=64, kernel_size=3, strides=1, padding='valid')
self.b5 = BatchNormalization()
self.a5 = Activation('relu') # 激活层
self.p5 = MaxPooling1D(pool_size=2, padding='valid')
#从卷积到全连接需要展平
self.flatten = Flatten()
# 全连接层
self.d1 = Dense(units=100, activation='relu', kernel_regularizer=l2(1e-4))
# 输出层
self.d2 = Dense(units=num_classes, activation='softmax', kernel_regularizer=l2(1e-4))
def call(self, x):
x = self.c1(x)
x = self.b1(x)
x = self.a1(x)
x = self.p1(x)
x = self.c2(x)
x = self.b2(x)
x = self.a2(x)
x = self.p2(x)
x = self.c3(x)
x = self.b3(x)
x = self.a3(x)
x = self.p3(x)
x = self.c4(x)
x = self.b4(x)
x = self.a4(x)
x = self.p4(x)
x = self.c5(x)
x = self.b5(x)
x = self.a5(x)
x = self.p5(x)
x = self.flatten(x)
x = self.d1(x)
y = self.d2(x)
return y
model = CwruModel()
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])
#加载模型
checkpoint_save_path = "./cwru_checkpoint/cwru_cnn.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
print('-------------load the model-----------------')
model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)
history = model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), shuffle=True, callbacks=[cp_callback])
model.summary() #输出模型各层的参数状况
# 显示训练集和验证集的acc和loss曲线
#根据compile参数metrics,history包含不同的内容
train_acc = history.history['accuracy'] #训练集准确率
val_acc = history.history['val_accuracy'] #测试集准确率
train_loss = history.history['loss'] #训练集损失率
val_loss = history.history['val_loss'] #测试集损失率
plt.subplot(1, 2, 1) #画两行一列的第1个子图
plt.plot(train_loss, label='train_loss')
plt.plot(val_loss, label='val_loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.legend() #函数主要的作用就是给图加上图例, 要求线条有label
plt.title('Training and Validation loss')
plt.subplot(1, 2, 2) #画两行一列的第1个子图
plt.plot(train_acc, label='train_acc')
plt.plot(val_acc, label='val_acc')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend() #函数主要的作用就是给图加上图例, 要求线条有label
plt.title('Training and Validation accuracy')
plt.show()
使用模型进行预测 cwru_predict.py
import os
from datetime import time
import matplotlib.pyplot as plt
import numpy as np
from tensorflow_core.python.keras import Model
from tensorflow_core.python.keras.layers import Conv1D, Activation, BatchNormalization, MaxPooling1D, Flatten, Dense
import tensorflow as tf
from tensorflow_core.python.keras.regularizers import l2
import cwru_preprocess as preprocess
# 训练参数
batch_size = 128
epochs = 20
num_classes = 10
length = 2048
BatchNorm = True # 是否批量归一化
number = 1000 # 每类样本的数量
normal = True # 是否标准化
rate = [0.7,0.2,0.1] # 测试集验证集划分比例
path = r'cwru_data\0HP'
x_train, y_train, x_valid, y_valid, x_test, y_test = preprocess.prepro(d_path=path,length=length,
number=number,
normal=normal,
rate=rate,
enc=True, enc_step=28)
# 输入卷积的时候还需要修改一下,增加通道数目
x_train, x_valid, x_test = x_train[:,:,np.newaxis], x_valid[:,:,np.newaxis], x_test[:,:,np.newaxis] #[:,:,np.newaxis]是什么意思
# 输入数据的维度
input_shape =x_train.shape[1:]
print('训练样本维度:', x_train.shape)
print('训练样本个数', x_train.shape[0])
print('验证样本的维度', x_valid.shape)
print('验证样本个数', x_valid.shape[0])
print('测试样本的维度', x_test.shape)
print('测试样本个数', x_test.shape[0])
print('测试标签的维度', y_test.shape)
class CwruModel(Model):
def __init__(self): #构造函数
super(CwruModel, self).__init__()
#第1层卷积
self.c1 = Conv1D(filters=16, kernel_size=64, strides=16, padding='same', kernel_regularizer=l2(1e-4), input_shape = input_shape)#卷积层
self.b1 = BatchNormalization() # BN层
self.a1 = Activation('relu') # 激活层
self.p1 = MaxPooling1D(pool_size=2) #池化层
#第2层卷积
self.c2 = Conv1D(filters=32, kernel_size=3, strides=1, padding='same')
self.b2 = BatchNormalization()
self.a2 = Activation('relu') # 激活层
self.p2 = MaxPooling1D(pool_size=2, padding='valid')
#第3层卷积
self.c3 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
self.b3 = BatchNormalization()
self.a3 = Activation('relu') # 激活层
self.p3 = MaxPooling1D(pool_size=2, padding='valid')
#第4层卷积
self.c4 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
self.b4 = BatchNormalization()
self.a4 = Activation('relu') # 激活层
self.p4 = MaxPooling1D(pool_size=2, padding='valid')
#第5层卷积
self.c5 = Conv1D(filters=64, kernel_size=3, strides=1, padding='valid')
self.b5 = BatchNormalization()
self.a5 = Activation('relu') # 激活层
self.p5 = MaxPooling1D(pool_size=2, padding='valid')
#从卷积到全连接需要展平
self.flatten = Flatten()
# 全连接层
self.d1 = Dense(units=100, activation='relu', kernel_regularizer=l2(1e-4))
# 输出层
self.d2 = Dense(units=num_classes, activation='softmax', kernel_regularizer=l2(1e-4))
def call(self, x):
x = self.c1(x)
x = self.b1(x)
x = self.a1(x)
x = self.p1(x)
x = self.c2(x)
x = self.b2(x)
x = self.a2(x)
x = self.p2(x)
x = self.c3(x)
x = self.b3(x)
x = self.a3(x)
x = self.p3(x)
x = self.c4(x)
x = self.b4(x)
x = self.a4(x)
x = self.p4(x)
x = self.c5(x)
x = self.b5(x)
x = self.a5(x)
x = self.p5(x)
x = self.flatten(x)
x = self.d1(x)
y = self.d2(x)
return y
model = CwruModel()
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])
#加载模型
checkpoint_save_path = "./cwru_checkpoint/cwru_cnn.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
print('-------------load the model-----------------')
model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)
loss, accuracy = model.evaluate(x_valid, y_valid)
print('loss=', loss)
print('accuracy=', accuracy)
y_pre = model.predict(x_valid[0:10])
# print("------------预测样本数据----------")
# print(x_valid[0:10])
print("------------预测结果概率----------")
print(y_pre)
print("------------预测结果分类----------")
#概率数组转化为标签, 如[0.1, 0.2, 0.7]转化为2
print(np.argmax(y_pre, axis=1))