09-TensorFlow 基于WDCNN的轴承故障诊断

1.数据集

数据是来自凯斯西储大学(CWRU)滚动轴承数据中心.
官方网站数据下载地址: https://csegroups.case.edu/bearingdatacenter/pages/download-data-file

CWRU滚动轴承数据采集系统:
09-TensorFlow 基于WDCNN的轴承故障诊断_第1张图片

CWRU轴承中心数据采集系统如上图所示。本试验的试验对象为图中的驱动端轴承,被诊断的轴承型号为深沟球轴承SKF6205,有故障的轴承由电火花加工制作而成,系统的采样频率为12kHz。被诊断的轴承一共有3种缺陷位置,分别是滚动体损伤,外圈损伤与内圈损伤,损伤直径的大小分别为包括0.007inch,0.014inch和0.021inch,共计9种损伤状态。试验中,每次使用2048个数据点进行诊断。为了便于训练卷积神经网络,对每段信号x均做归一化处理,归一化处理的公式如下式
在这里插入图片描述
试验一共准备了4个数据集,如表2-3所示。数据集A、B和C分别是在负载为1hp、2hp和3hp下的数据集。每个数据集各包括6600个训练样本与250个测试样本,其中训练样本采用数据集增强技术,测试样本之间无重叠。数据集D是数据集A、B和C的并集,即包括了3种负载状态,一共有19800个训练样本与750个测试样本。

本项目数据集下载地址: https://download.csdn.net/download/qq_41865229/85200778

试验数据集描述
09-TensorFlow 基于WDCNN的轴承故障诊断_第2张图片

2.WDCNN算法描述

目前常用的二维卷积神经网络,例如VGGnet、ResNet、以及谷歌的Inception V4,这三种网络结构均含有堆叠式的3×3的卷积核。这样既可以加深网络深度,也可以实现以较少的参数,获取较大的感受野,从而抑制过拟合。然而,对于一维振动信号,两层3×1卷积的结构,以6个权值为代价,仅仅获取了5×1的感受野,反而将上述优势变成了劣势,因此视觉领域的网络结构不适用于轴承故障诊断领域。

本节针对一维振动信号的特点,设计出名为“第一层宽卷积核深度卷积神经网WDCNN(Deep Convolutional Neural Networks with Wide First-layer Kernel)模型,其结构特点是第一层为大卷积核,之后卷积层全部为3×1的小卷积核。

WDCNN的第一层为大卷积核,目的是为了提取短时特征,其作用与短时傅里叶变换类似。不同点在于,短时傅里叶变换的窗口函数是正弦函数,而WDCNN的第一层大卷积核,是通过优化算法训练得到,其优点是可以自动学习面向诊断的特征,而自动去除对诊断没有帮助的特征。

为了增强WDCNN的表达能力,除第一层外,其与卷积层的卷积核大小均为3×1。由于卷积核参数少,这样有利于加深网络,同时可以抑制过拟合。每层卷积操作之后均进行批量归一化处理BN(Batch Normalization),然后进行2×1的最大值池化,WDCNN的结构图如下所示。

WDCNN结构图:
09-TensorFlow 基于WDCNN的轴承故障诊断_第3张图片
试验中使用的WDCNN模型参数如下示。该WDCNN模型共有5层卷积与池化层,第一层卷积核大小为64×1,除第一层外,其余卷积核的大小均为3×1。隐含层神经元个数为100,Softmax层共有10个输出,对应10种轴承状态。

WDCNN的结构参数:
09-TensorFlow 基于WDCNN的轴承故障诊断_第4张图片

3.项目代码

数据集制作代码 cwru_preprocess.py

from scipy.io import loadmat
import numpy as np
import os
from sklearn import preprocessing  # 0-1编码
from sklearn.model_selection import StratifiedShuffleSplit  # 随机划分,保证每一类比例相同
import tensorflow as tf

def prepro(d_path, length=864, number=1000, normal=True, rate=[0.5, 0.25, 0.25], enc=True, enc_step=28):
    """对数据进行预处理,返回train_X, train_Y, valid_X, valid_Y, test_X, test_Y样本.

    :param d_path: 源数据地址
    :param length: 信号长度,默认2个信号周期,864
    :param number: 每种信号个数,总共10类,默认每个类别1000个数据
    :param normal: 是否标准化.True,Fales.默认True
    :param rate: 训练集/验证集/测试集比例.默认[0.5,0.25,0.25],相加要等于1
    :param enc: 训练集、验证集是否采用数据增强.Bool,默认True
    :param enc_step: 增强数据集采样顺延间隔
    :return: Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y

    ```
    import preprocess.preprocess_nonoise as pre

    train_X, train_Y, valid_X, valid_Y, test_X, test_Y = pre.prepro(d_path=path,
                                                                    length=864,
                                                                    number=1000,
                                                                    normal=False,
                                                                    rate=[0.5, 0.25, 0.25],
                                                                    enc=True,
                                                                    enc_step=28)
    ```
    """
    # 获得该文件夹下所有.mat文件名
    filenames = os.listdir(d_path)

    def capture(original_path):
        """读取mat文件,返回字典

        :param original_path: 读取路径
        :return: 数据字典
        """
        files = {}
        for i in filenames:
            # 文件路径
            file_path = os.path.join(d_path, i)
            file = loadmat(file_path)
            file_keys = file.keys()
            for key in file_keys:
                if 'DE' in key:
                    files[i] = file[key].ravel()
        return files

    def slice_enc(data, slice_rate=rate[1] + rate[2]):
        """将数据切分为前面多少比例,后面多少比例.

        :param data: 单挑数据
        :param slice_rate: 验证集以及测试集所占的比例
        :return: 切分好的数据
        """
        keys = data.keys()
        Train_Samples = {}
        Test_Samples = {}
        for i in keys:
            slice_data = data[i]
            all_lenght = len(slice_data)
            end_index = int(all_lenght * (1 - slice_rate))
            samp_train = int(number * (1 - slice_rate))  # 700
            Train_sample = []
            Test_Sample = []
            if enc:
                enc_time = length // enc_step
                samp_step = 0  # 用来计数Train采样次数
                for j in range(samp_train):
                    random_start = np.random.randint(low=0, high=(end_index - 2 * length))
                    label = 0
                    for h in range(enc_time):
                        samp_step += 1
                        random_start += enc_step
                        sample = slice_data[random_start: random_start + length]
                        Train_sample.append(sample)
                        if samp_step == samp_train:
                            label = 1
                            break
                    if label:
                        break
            else:
                for j in range(samp_train):
                    random_start = np.random.randint(low=0, high=(end_index - length))
                    sample = slice_data[random_start:random_start + length]
                    Train_sample.append(sample)

            # 抓取测试数据
            for h in range(number - samp_train):
                random_start = np.random.randint(low=end_index, high=(all_lenght - length))
                sample = slice_data[random_start:random_start + length]
                Test_Sample.append(sample)
            Train_Samples[i] = Train_sample
            Test_Samples[i] = Test_Sample
        return Train_Samples, Test_Samples

    # 仅抽样完成,打标签
    def add_labels(train_test):
        X = []
        Y = []
        label = 0
        for i in filenames:
            x = train_test[i]
            X += x
            lenx = len(x)
            Y += [label] * lenx
            label += 1
        return X, Y

    # one-hot编码
    def one_hot(Train_Y, Test_Y):
        Train_Y = np.array(Train_Y).reshape([-1, 1])
        Test_Y = np.array(Test_Y).reshape([-1, 1])
        Encoder = preprocessing.OneHotEncoder()
        Encoder.fit(Train_Y)
        Train_Y = Encoder.transform(Train_Y).toarray()
        Test_Y = Encoder.transform(Test_Y).toarray()
        Train_Y = np.asarray(Train_Y, dtype=np.int32)
        Test_Y = np.asarray(Test_Y, dtype=np.int32)
        return Train_Y, Test_Y

    def scalar_stand(Train_X, Test_X):
        # 用训练集标准差标准化训练集以及测试集
        scalar = preprocessing.StandardScaler().fit(Train_X)
        Train_X = scalar.transform(Train_X)
        Test_X = scalar.transform(Test_X)
        return Train_X, Test_X

    def valid_test_slice(Test_X, Test_Y):
        test_size = rate[2] / (rate[1] + rate[2])
        ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size)
        for train_index, test_index in ss.split(Test_X, Test_Y):
            X_valid, X_test = Test_X[train_index], Test_X[test_index]
            Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index]
            return X_valid, Y_valid, X_test, Y_test

    # 从所有.mat文件中读取出数据的字典
    data = capture(original_path=d_path)
    # 将数据切分为训练集、测试集
    train, test = slice_enc(data)
    # 为训练集制作标签,返回X,Y
    Train_X, Train_Y = add_labels(train)
    # 为测试集制作标签,返回X,Y
    Test_X, Test_Y = add_labels(test)
    # 为训练集Y/测试集One-hot标签
    Train_Y, Test_Y = one_hot(Train_Y, Test_Y)
    # 训练数据/测试数据 是否标准化.
    if normal:
        Train_X, Test_X = scalar_stand(Train_X, Test_X)
    else:
        # 需要做一个数据转换,转换成np格式.
        Train_X = np.asarray(Train_X)
        Test_X = np.asarray(Test_X)

    # 将测试集切分为验证集合和测试集.
    Valid_X, Valid_Y, Test_X, Test_Y = valid_test_slice(Test_X, Test_Y)
    return Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y


if __name__ == "__main__":
    path = r'cwru_data\0HP'
    train_X, train_Y, valid_X, valid_Y, test_X, test_Y = prepro(d_path=path,
                                                                length=864,
                                                                number=1000,
                                                                normal=False,
                                                                rate=[0.5, 0.25, 0.25],
                                                                enc=False,
                                                                enc_step=28)
    print(train_X[0:5])
    print(train_Y[0:5])

模型训练代码 cwru_train.py

import os
import matplotlib.pyplot as plt
import numpy as np
from tensorflow_core.python.keras import Model
from tensorflow_core.python.keras.layers import Conv1D, Activation, BatchNormalization, MaxPooling1D, Flatten, Dense
import tensorflow as tf
from tensorflow_core.python.keras.regularizers import l2

import cwru_preprocess as preprocess
# 训练参数
batch_size = 128
epochs = 20
num_classes = 10
length = 2048
BatchNorm = True # 是否批量归一化
number = 1000 # 每类样本的数量
normal = True # 是否标准化
rate = [0.7,0.2,0.1] # 测试集验证集划分比例

path = r'cwru_data\0HP'
x_train, y_train, x_valid, y_valid, x_test, y_test = preprocess.prepro(d_path=path,length=length,
                                                                  number=number,
                                                                  normal=normal,
                                                                  rate=rate,
                                                                  enc=True, enc_step=28)
# 输入卷积的时候还需要修改一下,增加通道数目
x_train, x_valid, x_test = x_train[:,:,np.newaxis], x_valid[:,:,np.newaxis], x_test[:,:,np.newaxis] #[:,:,np.newaxis]是什么意思
# 输入数据的维度
input_shape =x_train.shape[1:]


print('训练样本维度:', x_train.shape)
print('训练样本个数', x_train.shape[0])
print('验证样本的维度', x_valid.shape)
print('验证样本个数', x_valid.shape[0])
print('测试样本的维度', x_test.shape)
print('测试样本个数', x_test.shape[0])
print('测试标签的维度', y_test.shape)





class CwruModel(Model):
    def __init__(self): #构造函数
        super(CwruModel, self).__init__()
        #第1层卷积
        self.c1 = Conv1D(filters=16, kernel_size=64, strides=16, padding='same', kernel_regularizer=l2(1e-4), input_shape = input_shape)#卷积层
        self.b1 = BatchNormalization()  # BN层
        self.a1 = Activation('relu')  # 激活层
        self.p1 = MaxPooling1D(pool_size=2) #池化层

        #第2层卷积
        self.c2 = Conv1D(filters=32, kernel_size=3, strides=1, padding='same')
        self.b2 = BatchNormalization()
        self.a2 = Activation('relu')  # 激活层
        self.p2 = MaxPooling1D(pool_size=2, padding='valid')

        #第3层卷积
        self.c3 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
        self.b3 = BatchNormalization()
        self.a3 = Activation('relu')  # 激活层
        self.p3 = MaxPooling1D(pool_size=2, padding='valid')

        #第4层卷积
        self.c4 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
        self.b4 = BatchNormalization()
        self.a4 = Activation('relu')  # 激活层
        self.p4 = MaxPooling1D(pool_size=2, padding='valid')

        #第5层卷积
        self.c5 = Conv1D(filters=64, kernel_size=3, strides=1, padding='valid')
        self.b5 = BatchNormalization()
        self.a5 = Activation('relu')  # 激活层
        self.p5 = MaxPooling1D(pool_size=2, padding='valid')

        #从卷积到全连接需要展平
        self.flatten = Flatten()
        # 全连接层
        self.d1 = Dense(units=100, activation='relu', kernel_regularizer=l2(1e-4))
        # 输出层
        self.d2 = Dense(units=num_classes, activation='softmax', kernel_regularizer=l2(1e-4))


    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)

        x = self.c2(x)
        x = self.b2(x)
        x = self.a2(x)
        x = self.p2(x)

        x = self.c3(x)
        x = self.b3(x)
        x = self.a3(x)
        x = self.p3(x)

        x = self.c4(x)
        x = self.b4(x)
        x = self.a4(x)
        x = self.p4(x)

        x = self.c5(x)
        x = self.b5(x)
        x = self.a5(x)
        x = self.p5(x)

        x = self.flatten(x)
        x = self.d1(x)
        y = self.d2(x)
        return y


model = CwruModel()

model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])

#加载模型
checkpoint_save_path = "./cwru_checkpoint/cwru_cnn.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)



history = model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), shuffle=True, callbacks=[cp_callback])
model.summary() #输出模型各层的参数状况

# 显示训练集和验证集的acc和loss曲线
#根据compile参数metrics,history包含不同的内容
train_acc = history.history['accuracy']                #训练集准确率
val_acc = history.history['val_accuracy']        #测试集准确率

train_loss = history.history['loss']                                      #训练集损失率
val_loss = history.history['val_loss']                              #测试集损失率


plt.subplot(1, 2, 1)  #画两行一列的第1个子图
plt.plot(train_loss, label='train_loss')
plt.plot(val_loss, label='val_loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.legend()   #函数主要的作用就是给图加上图例, 要求线条有label
plt.title('Training and Validation loss')



plt.subplot(1, 2, 2)  #画两行一列的第1个子图
plt.plot(train_acc, label='train_acc')
plt.plot(val_acc, label='val_acc')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()   #函数主要的作用就是给图加上图例, 要求线条有label
plt.title('Training and Validation accuracy')
plt.show()

运行结果
09-TensorFlow 基于WDCNN的轴承故障诊断_第5张图片

09-TensorFlow 基于WDCNN的轴承故障诊断_第6张图片

使用模型进行预测 cwru_predict.py

import os
from datetime import time

import matplotlib.pyplot as plt
import numpy as np
from tensorflow_core.python.keras import Model
from tensorflow_core.python.keras.layers import Conv1D, Activation, BatchNormalization, MaxPooling1D, Flatten, Dense
import tensorflow as tf
from tensorflow_core.python.keras.regularizers import l2

import cwru_preprocess as preprocess
# 训练参数
batch_size = 128
epochs = 20
num_classes = 10
length = 2048
BatchNorm = True # 是否批量归一化
number = 1000 # 每类样本的数量
normal = True # 是否标准化
rate = [0.7,0.2,0.1] # 测试集验证集划分比例

path = r'cwru_data\0HP'
x_train, y_train, x_valid, y_valid, x_test, y_test = preprocess.prepro(d_path=path,length=length,
                                                                  number=number,
                                                                  normal=normal,
                                                                  rate=rate,
                                                                  enc=True, enc_step=28)
# 输入卷积的时候还需要修改一下,增加通道数目
x_train, x_valid, x_test = x_train[:,:,np.newaxis], x_valid[:,:,np.newaxis], x_test[:,:,np.newaxis] #[:,:,np.newaxis]是什么意思
# 输入数据的维度
input_shape =x_train.shape[1:]

print('训练样本维度:', x_train.shape)
print('训练样本个数', x_train.shape[0])
print('验证样本的维度', x_valid.shape)
print('验证样本个数', x_valid.shape[0])
print('测试样本的维度', x_test.shape)
print('测试样本个数', x_test.shape[0])
print('测试标签的维度', y_test.shape)





class CwruModel(Model):
    def __init__(self): #构造函数
        super(CwruModel, self).__init__()
        #第1层卷积
        self.c1 = Conv1D(filters=16, kernel_size=64, strides=16, padding='same', kernel_regularizer=l2(1e-4), input_shape = input_shape)#卷积层
        self.b1 = BatchNormalization()  # BN层
        self.a1 = Activation('relu')  # 激活层
        self.p1 = MaxPooling1D(pool_size=2) #池化层

        #第2层卷积
        self.c2 = Conv1D(filters=32, kernel_size=3, strides=1, padding='same')
        self.b2 = BatchNormalization()
        self.a2 = Activation('relu')  # 激活层
        self.p2 = MaxPooling1D(pool_size=2, padding='valid')

        #第3层卷积
        self.c3 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
        self.b3 = BatchNormalization()
        self.a3 = Activation('relu')  # 激活层
        self.p3 = MaxPooling1D(pool_size=2, padding='valid')

        #第4层卷积
        self.c4 = Conv1D(filters=64, kernel_size=3, strides=1, padding='same')
        self.b4 = BatchNormalization()
        self.a4 = Activation('relu')  # 激活层
        self.p4 = MaxPooling1D(pool_size=2, padding='valid')

        #第5层卷积
        self.c5 = Conv1D(filters=64, kernel_size=3, strides=1, padding='valid')
        self.b5 = BatchNormalization()
        self.a5 = Activation('relu')  # 激活层
        self.p5 = MaxPooling1D(pool_size=2, padding='valid')

        #从卷积到全连接需要展平
        self.flatten = Flatten()
        # 全连接层
        self.d1 = Dense(units=100, activation='relu', kernel_regularizer=l2(1e-4))
        # 输出层
        self.d2 = Dense(units=num_classes, activation='softmax', kernel_regularizer=l2(1e-4))


    def call(self, x):
        x = self.c1(x)
        x = self.b1(x)
        x = self.a1(x)
        x = self.p1(x)

        x = self.c2(x)
        x = self.b2(x)
        x = self.a2(x)
        x = self.p2(x)

        x = self.c3(x)
        x = self.b3(x)
        x = self.a3(x)
        x = self.p3(x)

        x = self.c4(x)
        x = self.b4(x)
        x = self.a4(x)
        x = self.p4(x)

        x = self.c5(x)
        x = self.b5(x)
        x = self.a5(x)
        x = self.p5(x)

        x = self.flatten(x)
        x = self.d1(x)
        y = self.d2(x)
        return y


model = CwruModel()

model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])

#加载模型
checkpoint_save_path = "./cwru_checkpoint/cwru_cnn.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)


loss, accuracy = model.evaluate(x_valid, y_valid)
print('loss=', loss)
print('accuracy=', accuracy)
y_pre = model.predict(x_valid[0:10])
# print("------------预测样本数据----------")
# print(x_valid[0:10])
print("------------预测结果概率----------")
print(y_pre)
print("------------预测结果分类----------")
#概率数组转化为标签, 如[0.1, 0.2, 0.7]转化为2
print(np.argmax(y_pre, axis=1))

运行结果
09-TensorFlow 基于WDCNN的轴承故障诊断_第7张图片
09-TensorFlow 基于WDCNN的轴承故障诊断_第8张图片

你可能感兴趣的:(TensorFlow入门,tensorflow,深度学习)