【python-sklearn】中文文本处理LDA主题模型分析

数据集和资料:
链接:LDA主题模型
提取码:rlns

数据概览
【python-sklearn】中文文本处理LDA主题模型分析_第1张图片

代码:

import os
import pandas as pd
import re
import jieba
import jieba.posseg as psg


#######预处理

output_path = 'D:/lda/result'
file_path = 'D:/lda/data'
os.chdir(file_path)
data=pd.read_excel("data.xlsx")#content type
os.chdir(output_path)
dic_file = "D:/lda/stop_dic/dict.txt"
stop_file = "D:/lda/stop_dic/stopwords.txt"


def chinese_word_cut(mytext):
    jieba.load_userdict(dic_file)
    jieba.initialize()
    try:
        stopword_list = open(stop_file,encoding ='utf-8')
    except:
        stopword_list = []
        print("error in stop_file")
    stop_list = []
    flag_list = ['n','nz','vn']
    for line in stopword_list:
        line = re.sub(u'\n|\\r', '', line)
        stop_list.append(line)
    
    word_list = []
    #jieba分词
    seg_list = psg.cut(mytext)
    for seg_word in seg_list:
        #word = re.sub(u'[^\u4e00-\u9fa5]','',seg_word.word) 
        word = seg_word.word
        find = 0
        for stop_word in stop_list:
            if stop_word == word or len(word)<2:     #this word is stopword
                    find = 1
                    break
        if find == 0 and seg_word.flag in flag_list:
            word_list.append(word)      
    return (" ").join(word_list)


data["content_cutted"] = data.content.apply(chinese_word_cut)




#######LDA分析

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation



def print_top_words(model, feature_names, n_top_words):
    tword = []
    for topic_idx, topic in enumerate(model.components_):
        print("Topic #%d:" % topic_idx)
        topic_w = " ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])
        tword.append(topic_w)
        print(topic_w)
    return tword



n_features = 1000 #提取1000个特征词语
tf_vectorizer = CountVectorizer(strip_accents = 'unicode',
                                max_features=n_features,
                                stop_words='english',
                                max_df = 0.5,
                                min_df = 10)
tf = tf_vectorizer.fit_transform(data.content_cutted)


n_topics = 8
lda = LatentDirichletAllocation(n_components=n_topics, max_iter=50,
                                learning_method='batch',
                                learning_offset=50,
#                                 doc_topic_prior=0.1,
#                                 topic_word_prior=0.01,
                               random_state=0)
lda.fit(tf)

###########每个主题对应词语
n_top_words = 25
tf_feature_names = tf_vectorizer.get_feature_names()
topic_word = print_top_words(lda, tf_feature_names, n_top_words)

###########输出每篇文章对应主题
import numpy as np
topics=lda.transform(tf)
topic = []
for t in topics:
    topic.append(list(t).index(np.max(t)))
data['topic']=topic
data.to_excel("data_topic.xlsx",index=False)
topics[0]#0 1 2 



###########可视化

import pyLDAvis
import pyLDAvis.sklearn

pyLDAvis.enable_notebook()
pic = pyLDAvis.sklearn.prepare(lda, tf, tf_vectorizer)
pyLDAvis.display(pic)
pyLDAvis.save_html(pic, 'lda_pass'+str(n_topics)+'.html')
#去工作路径下找保存好的html文件
pyLDAvis.show(pic)


###########困惑度
import matplotlib.pyplot as plt

plexs = []
n_max_topics = 16
for i in range(1,n_max_topics):
    print(i)
    lda = LatentDirichletAllocation(n_components=i, max_iter=50,
                                    learning_method='batch',
                                    learning_offset=50,random_state=0)
    lda.fit(tf)
    plexs.append(lda.perplexity(tf))


n_t=15#区间最右侧的值。注意:不能大于n_max_topics
x=list(range(1,n_t))
plt.plot(x,plexs[1:n_t])
plt.xlabel("number of topics")
plt.ylabel("perplexity")
plt.show()


可视化结果:


【python-sklearn】中文文本处理LDA主题模型分析_第2张图片
如上图的困惑度曲线可知,当取值为8时效果较好

【python-sklearn】中文文本处理LDA主题模型分析_第3张图片

处理结果
【python-sklearn】中文文本处理LDA主题模型分析_第4张图片
参考:up主—>五连单排一班

你可能感兴趣的:(Python数据分析与挖掘实战,sklearn,python,机器学习)