缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。
缓存穿透将导致不存在的数据每次请求都要到存储层去查询, 失去了缓存保护后端存储的意义。
造成缓存穿透的基本原因有两个:
1、自身业务代码或者数据出现问题;
2、一些恶意攻击、 爬虫等造成大量空命中。
1、缓存空对象
String get(String key) {
// 从缓存中获取数据
String cacheValue = cache.get(key);
// 缓存为空
if (StringUtils.isBlank(cacheValue)) {
// 从存储中获取
String storageValue = storage.get(key);
cache.set(key, storageValue);
// 如果存储数据为空, 需要设置一个过期时间(300秒)
if (storageValue == null) {
cache.expire(key, 60 * 5);
}
return storageValue;
} else {
// 缓存非空
return cacheValue;
}
}
注意:对于不存在的空对象,一定要设置过期时间!
空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间(如果是攻击,问题更严重),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。
2、布隆过滤器
对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。
布隆过滤器就是一个 大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。
向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。
向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组比较稀疏,这个概率就会很大,如果这个位数组比较拥挤,这个概率就会降低。
这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为复杂, 但是缓存空间占用很少。
可以用redisson实现布隆过滤器,引入依赖:
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.6.5</version>
</dependency>
示例伪代码:
package com.jihu.redis.redisson.bloomFilter;
import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
public class RedissionBloomFilter {
public static void main(String[] args) {
Config config = new Config();
config.useSingleServer().setAddress("redis://192.168.131.171:6380");
// 构造Redisson
RedissonClient redisson = Redisson.create(config);
RBloomFilter<Object> bloomFilter = redisson.getBloomFilter("nameList");
// 初始化布隆过滤器:预计元素100000000L,误差率为3%,根据这两个参数会计算出底层的bit数组大小
bloomFilter.tryInit(100000000L, 0.03);
// 将xiaoyan插入到布隆过滤器中
bloomFilter.add("xiaoyan");
// 判断下面用户是否在布隆过滤器中
System.out.println(bloomFilter.contains("jihu")); // false
System.out.println(bloomFilter.contains("xuner")); // false
System.out.println(bloomFilter.contains("xiaoyan")); // true
}
}
查看结果:
18:04:45.087 [redisson-netty-1-1] DEBUG org.redisson.command.CommandAsyncService - connection released for command null and params null from slot null using connection RedisConnection@1310301061 [redisClient=[addr=redis://192.168.131.171:6380], channel=[id: 0x02a5d42b, L:/192.168.131.1:8111 - R:/192.168.131.171:6380]]
false
18:04:45.091 [redisson-netty-1-3] DEBUG org.redisson.command.CommandAsyncService - connection released for command null and params null from slot null using connection RedisConnection@85296485 [redisClient=[addr=redis://192.168.131.171:6380], channel=[id: 0x6cb143ed, L:/192.168.131.1:8112 - R:/192.168.131.171:6380]]
false
18:04:45.098 [redisson-netty-1-6] DEBUG org.redisson.command.CommandAsyncService - connection released for command null and params null from slot null using connection RedisConnection@36085293 [redisClient=[addr=redis://192.168.131.171:6380], channel=[id: 0x15024e01, L:/192.168.131.1:8119 - R:/192.168.131.171:6380]]
true
使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,布隆过滤器缓存过滤伪代码:
//初始化布隆过滤器
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
//初始化布隆过滤器:预计元素为100000000L,误差率为3%
bloomFilter.tryInit(100000000L, 0.03);
//把所有数据存入布隆过滤器
void init(){
for (String key: keys) {
bloomFilter.put(key);
}
}
String get(String key) {
// 从布隆过滤器这一级缓存判断下key是否存在
Boolean exist = bloomFilter.contains(key);
if(!exist){
return "";
}
// 从缓存中获取数据
String cacheValue = cache.get(key);
// 缓存为空
if (StringUtils.isBlank(cacheValue)) {
// 从存储中获取
String storageValue = storage.get(key);
cache.set(key, storageValue);
// 如果存储数据为空, 需要设置一个过期时间(300秒)
if (storageValue == null) {
cache.expire(key, 60 * 5);
}
return storageValue;
} else {
// 缓存非空
return cacheValue;
}
}
注意:布隆过滤器不能删除数据,如果要删除得重新初始化数据。布隆过滤器需要定期维护!!!
由于大批量缓存在同一时间失效可能导致大量请求同时穿透缓存直达数据库,可能会造成数据库瞬间压力过大甚至挂掉,对于这种情况我们在批量增加缓存时最好将这一批数据的缓存过期时间设置为一个时间段内的不同时间。
示例伪代码:
String get(String key) {
// 从缓存中获取数据
String cacheValue = cache.get(key);
// 缓存为空
if (StringUtils.isBlank(cacheValue)) {
// 从存储中获取
String storageValue = storage.get(key);
cache.set(key, storageValue);
//设置一个过期时间(300到600之间的一个随机数)
int expireTime = new Random().nextInt(300) + 300;
if (storageValue == null) {
cache.expire(key, expireTime);
}
return storageValue;
} else {
// 缓存非空
return cacheValue;
}
}
// 方法1:
public synchronized List<String> getData01() {
List<String> result = new ArrayList<String>();
// 从缓存读取数据
result = getDataFromCache();
if (result.isEmpty()) {
// 从数据库查询数据
result = getDataFromDB();
// 将查询到的数据写入缓存
setDataToCache(result);
}
return result;
}
这种方式确实能够防止缓存失效时高并发到数据库,但是缓存没有失效的时候,在从缓存中拿数据时需要排队取锁,这必然会大大的降低了系统的吞吐量.
解决方案二:
static Object lock = new Object();
public List<String> getData02() {
List<String> result = new ArrayList<String>();
// 从缓存读取数据
result = getDataFromCache();
if (result.isEmpty()) {
synchronized (lock) {
// 从数据库查询数据
result = getDataFromDB();
// 将查询到的数据写入缓存
setDataToCache(result);
}
}
return result;
}
这个方法在缓存命中的时候,系统的吞吐量不会受影响,但是当缓存失效时,请求还是会打到数据库,只不过不是高并发而是阻塞而已.但是,这样会造成用户体验不佳,并且还给数据库带来额外压力.
public List<String> getData03() {
List<String> result = new ArrayList<String>();
// 从缓存读取数据
result = getDataFromCache();
if (result.isEmpty()) {
synchronized (lock) {
//双重判断,第二个以及之后的请求不必去找数据库,直接命中缓存
// 查询缓存
result = getDataFromCache();
if (result.isEmpty()) {
// 从数据库查询数据
result = getDataFromDB();
// 将查询到的数据写入缓存
setDataToCache(result);
}
}
}
return result;
}
双重判断虽然能够阻止高并发请求打到数据库,但是第二个以及之后的请求在命中缓存时,还是排队进行的.比如,当30个请求一起并发过来,在双重判断时,第一个请求去数据库查询并更新缓存数据,剩下的29个请求则是依次排队取缓存中取数据.请求排在后面的用户的体验会不好.
static Lock reenLock = new ReentrantLock();
public List<String> getData04() throws InterruptedException {
List<String> result = new ArrayList<String>();
// 从缓存读取数据
result = getDataFromCache();
if (result.isEmpty()) {
if (reenLock.tryLock()) { // 如果是分布式,要用redisson分布式锁
try {
System.out.println("我拿到锁了,从DB获取数据库后写入缓存");
// 从数据库查询数据
result = getDataFromDB();
// 将查询到的数据写入缓存
setDataToCache(result);
} finally {
reenLock.unlock();// 释放锁
}
} else {
result = getDataFromCache();// 先查一下缓存
if (result.isEmpty()) {
System.out.println("我没拿到锁,缓存也没数据,先小憩一下");
// 这里可以自旋或者sleep
Thread.sleep(100);// 小憩一会儿
return getData04();// 重试
}
}
}
return result;
}
最后使用互斥锁的方式来实现,可以有效避免前面几种问题.
当然,在实际分布式场景中,我们还可以使用 redis、tair、zookeeper 等提供的分布式锁来实现.但是,如果我们的并发量如果只有几千的话,何必杀鸡焉用牛刀呢?
缓存雪崩指的是缓存层支撑不住或宕掉后, 流量会像奔逃的野牛一样, 打向后端存储层。
由于缓存层承载着大量请求, 有效地保护了存储层, 但是如果缓存层由于某些原因不能提供服务(比如超大并发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下降), 于是大量请求都会打到存储层, 存储层的调用量会暴增, 造成存储层也会级联宕机的情况。甚至有可能导致整个服务都不可用!
预防和解决缓存雪崩问题, 可以从以下三个方面进行着手。
比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、空值或是错误提示信息;
当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,也可以继续通过数据库读取。
开发人员使用“缓存+过期时间”的策略既可以加速数据读写, 又保证数据的定期更新, 这种模式基本能够满足绝大部分需求。 但是有两个问题如果同时出现, 可能就会对应用造成致命的危害:
在缓存失效的瞬间, 有大量线程来重建缓存, 造成后端负载加大, 甚至可能会让应用崩溃。
要解决这个问题主要就是要避免大量线程同时重建缓存。
我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存, 其他线程等待重建缓存的线程执行完, 重新从缓存获取数据即可。
示例伪代码:
String get(String key) {
// 从Redis中获取数据
String value = redis.get(key);
// 如果value为空, 则开始重构缓存
if (value == null) {
// 只允许一个线程重建缓存, 使用nx, 并设置过期时间ex
String mutexKey = "mutext:key:" + key;
if (redis.set(mutexKey, "1", "ex 180", "nx")) {
// 从数据源获取数据
value = db.get(key);
// 回写Redis, 并设置过期时间
redis.setex(key, timeout, value);
// 删除key_mutex
redis.delete(mutexKey);
}// 其他线程休息50毫秒后重试
else {
Thread.sleep(50);
get(key);
}
}
return value;
}
在大并发下,同时操作数据库与缓存会存在数据不一致性问题
1、线程一先写数据库,然后跟新缓存;
2、线程二此时也执行相同的逻辑,但是由于线程一执行的较慢,线程二执行的较快,导致线程二先修改完数据库并先把缓存更新了。这时候线程一再更新缓存,就会使用旧的值覆盖新值。从而导致数据不一致。
1、线程1执行完写数据库和删除缓存后,线程3恰好来查询。
2、此时线程3查询缓存是空,查数据是线程1写的10,然后准备将这个值写入到缓存中的时候,突然运行有些慢;
3、此时线程2也来写数据库,将其改成6,并删除缓存;
4、此时线程恢复,继续更新缓存为10. 此时就出现了读写并发不一致的问题。
每一次删除缓存之后,为了避免读线程写入错误的缓存,再sleep一会之后再次删除缓存。
不推荐!读写并发不一致很少发生,不需要为了这种小概率时间使得全部的请求都延迟!
1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可。
2、就算并发很高,如果业务上能容忍短时间的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期时间依然可以解决大部分业务对于缓存的要求。
3、【推荐】如果不能容忍缓存数据不一致,可以通过加读写锁保证并发读写或写写的时候按顺序排好队,读读的时候相当于无锁。
/**
* ==================== 读锁:查询库存 =======================
*/
@RequestMapping("/get_stock")
public String getStock(@RequestParam("clientId") Long clientId) {
String lockKey = "product_stock_101";
RReadWriteLock readWriteLock = redisson.getReadWriteLock(lockKey);
RLock rLock = readWriteLock.readLock();
System.out.println("获取读锁成功. ClientId: " + clientId);
// 获取到redisson锁对象
try {
rLock.lock();
// ======== 扣减库存业务员开始 ============
// 从redis获取库存数量
int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock"));
return String.valueOf(stock);
// ======== 扣减库存业务员结束 ============
} finally { // 防止异常导致锁无法释放!!!
// ============= 释放redisson锁 ==========
rLock.unlock();
System.out.println("释放读锁成功. ClientId: " + clientId);
}
}
加了写锁之后,相当于只有一个lockKey(“product_stock_101”),使用setnx设置之后,只能有一个线程持有这个lockKey完成修改操作,相当于串行执行修改的代码。
/**
* ==================== 写锁:修改库存 =======================
*/
@RequestMapping("/update_stock")
public String updateStock(@RequestParam("clientId") Long clientId) {
String lockKey = "product_stock_101";
RReadWriteLock readWriteLock = redisson.getReadWriteLock(lockKey);
WLock wLock = readWriteLock.writeLock();
System.out.println("获取写锁成功. ClientId: " + clientId);
// 获取到redisson锁对象
try {
wLock .lock();
// ======== 扣减库存业务员开始 ============
System.out.println("修改商品的库存为6....");
stringRedisTemplate.delete("stock");
// ======== 扣减库存业务员结束 ============
} finally { // 防止异常导致锁无法释放!!!
// ============= 释放redisson锁 ==========
wLock .unlock();
System.out.println("释放写锁成功. ClientId: " + clientId);
}
return "end";
}
4、也可以用阿里开源的canal通过监听数据库的binlog日志及时的去修改缓存,但是引入了新的中间件,增加了系统的复杂度。
此时应用程序不用对缓存做任何操作。因为通过监听数据库的binlog,会自动的去更新缓存。
以上我们针对的都是读多写少的情况加入缓存提高性能,如果写多读多的情况又不能容忍缓存数据不一致,那就没必要加缓存了,可以直接操作数据库。放入缓存的数据应该是对实时性、一致性要求不是很高的数据。切记不要为了用缓存,同时又要保证绝对的一致性做大量的过度设计和控制,增加系统复杂性!
trade:order:1
user:{uid}:friends:messages:{mid} 简化为 u:{uid}:fr:m:{mid}
在Redis中,一个字符串最大512MB,一个二级数据结构(例如hash、list、set、zset)可以存储大约40亿个(2^32-1)个元素,但实际中如果下面两种情况,我就会认为它是bigkey。
【1】、 字符串类型:它的big体现在单个value值很大,一般认为超过10KB就是bigkey。
【2】、非字符串类型:哈希、列表、集合、有序集合,它们的big体现在元素个数太多。
一般来说,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。
反例:一个包含200万个元素的list。
非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除(或者使用UNLINK异步非阻塞删除),同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞)。
bigkey也就意味着每次获取要产生的网络流量较大,假设一个bigkey为1MB,客户端每秒访问量为1000,那么每秒产生1000MB的流量,对于普通的千兆网卡(按照字节算是128MB/s)的服务器来说简直是灭顶之灾,而且一般服务器会采用单机多实例的方式来部署,也就是说一个bigkey可能会对其他实例也造成影响,其后果不堪设想。
有个bigkey,它安分守己(只执行简单的命令,例如hget、lpop、zscore等),但它设置了过期时间,当它过期后,会被删除,如果没有使用Redis 4.0的过期异步删除(lazyfree-lazy-expire yes),就会存在阻塞Redis的可能性。
一般来说,bigkey的产生都是由于程序设计不当,或者对于数据规模预料不清楚造成的,来看几个例子:
(1) 社交类:粉丝列表,如果某些明星或者大v不精心设计下,必是bigkey。
(2) 统计类:例如按天存储某项功能或者网站的用户集合,除非没几个人用,否则必是bigkey。
(3) 缓存类:将数据从数据库load出来序列化放到Redis里,这个方式非常常用,但有两个地方需要注意,第一,是不是有必要把所有字段都缓存;第二,有没有相关关联的数据,有的同学为了图方便把相关数据都存一个key下,产生bigkey。
1、拆
big list: list1、list2、…listN
big hash:可以讲数据分段存储,比如一个大的key,假设存了1百万的用户数据,可以拆分成200个key,每个key下面存放5000个用户数据。如果要查询某个用户,使用hash定位到具体的user_list_K这个段上。
2、 如果bigkey不可避免,也要思考一下要不要每次把所有元素都取出来(例如有时候仅仅需要hmget,而不是hgetall),删除也是一样,尽量使用优雅的方式来处理
例如:实体类型(要合理控制和使用数据结构,但也要注意节省内存和性能之间的平衡) 。
反例:
set user:1:name tom
set user:1:age 19
set user:1:favor football
正例:
hmset user:1 name tom age 19 favor football
建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期)。
Redis的内存大小不建议超过10G.
1、【推荐】 O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。
2、【推荐】 禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。
3、【推荐】合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。
4、【推荐】使用批量操作提高效率
原生命令:例如mget、mset。
非原生命令:可以使用pipeline提高效率。
5、【建议】 Redis事务功能较弱,不建议过多使用,可以用lua替代
正例: 不相干的业务拆分,公共数据做服务化。
标准使用方式:
JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
jedisPoolConfig.setMaxTotal(5);
jedisPoolConfig.setMaxIdle(2);
jedisPoolConfig.setTestOnBorrow(true);
JedisPool jedisPool = new JedisPool(jedisPoolConfig, "192.168.0.60", 6379, 3000, null);
Jedis jedis = null;
try {
jedis = jedisPool.getResource();
//具体的命令
jedis.executeCommand()
} catch (Exception e) {
logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
//注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
if (jedis != null)
jedis.close();
}
1)maxTotal:最大连接数,早期的版本叫maxActive
实际上这个是一个很难回答的问题,考虑的因素比较多:
以一个例子说明,假设:
那么理论上需要的资源池大小是50000 / 1000 = 50个。但事实上这是个理论值,还要考虑到要比理论值预留一些资源,通常来讲maxTotal可以比理论值大一些。
但这个值不是越大越好,一方面连接太多占用客户端和服务端资源,另一方面对于Redis这种高QPS的服务器,一个大命令的阻塞即使设置再大资源池仍然会无济于事。
2)maxIdle和minIdle
maxIdle 实际上才是业务需要的最大连接数,maxTotal是为了给出余量,所以maxIdle不要设置过小,否则会有new Jedis(新连接)开销。
连接池的最佳性能是maxTotal = maxIdle,这样就避免连接池伸缩带来的性能干扰。但是如果并发量不大或者maxTotal设置过高,会导致不必要的连接资源浪费。一般推荐maxIdle可以设置为按上面的业务期望QPS计算出来的理论连接数,maxTotal可以再放大一倍。
minIdle(最小空闲连接数),与其说是最小空闲连接数,不如说是"至少需要保持的空闲连接数",在使用连接的过程中,如果连接数超过了minIdle,那么继续建立连接,如果超过了maxIdle,当超过的连接执行完业务后会慢慢被移出连接池释放掉。
如果系统启动完马上就会有很多的请求过来,那么可以给redis连接池做预热,比如快速的创建一些redis连接,执行简单命令,类似ping(),快速的将连接池里的空闲连接提升到minIdle的数量。
连接池预热示例代码:
List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
Jedis jedis = null;
try {
jedis = pool.getResource();
minIdleJedisList.add(jedis);
jedis.ping();
} catch (Exception e) {
logger.error(e.getMessage(), e);
} finally {
//注意,这里不能马上close将连接还回连接池,否则最后连接池里只会建立1个连接。。
// 这里close之后,不是说这个连接被关闭了,只是连接被返回到连接池中去了!!!!! 如果这时候close,还回到连接池,相当于只会拿来一个连接去执行for循环中的内容
//jedis.close();
}
}
//统一将预热的连接还回连接池
for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
Jedis jedis = null;
try {
jedis = minIdleJedisList.get(i);
//将连接归还回连接池
jedis.close();
} catch (Exception e) {
logger.error(e.getMessage(), e);
} finally {
}
}
总之,要根据实际系统的QPS和调用redis客户端的规模整体评估每个节点所使用的连接池大小。
1、被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key。(问题: 如果有很多的过期key,但是后面又没有人访问了,这样会占用大量聂村)
2、主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期主动淘汰一批已过期的key
3、当前已用内存超过maxmemory(redis.conf 配置文件中可以配置)限定时, 触发主动清理策略
主动清理策略在Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略,总共8种:
a) 针对设置了过期时间的key做处理:
b) 针对所有的key做处理 :
c) 不处理:
淘汰很久没被访问过的数据,以最近一次访问时间作为参考。(淘汰这段时间中最旧的key)
淘汰最近一段时间被访问次数最少的数据,以次数作为参考。(淘汰这段时间使用次数最少的key)
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。这时使用LFU可能更好点。
根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。如果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap),会让 Redis 的性能急剧下降! 所以,生产环境,必须设置最大内存!!!!。
当Redis运行在主从模式时,只有主结点才会执行过期删除策略,然后把删除操作”del key”同步到从结点删除数据。