Object Detection--的一个好的对比总结文章


https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html



Jump to...
  1. Leaderboard
  2. Papers
    1. R-CNN
    2. Fast R-CNN
    3. Faster R-CNN
    4. MultiBox
    5. SPP-Net
    6. DeepID-Net
    7. NoC
    8. DeepBox
    9. MR-CNN
    10. YOLO
    11. YOLOv2
    12. AttentionNet
    13. DenseBox
    14. SSD
    15. DSSD
    16. Inside-Outside Net (ION)
    17. G-CNN
    18. HyperNet
    19. MultiPathNet
    20. CRAFT
    21. OHEM
    22. R-FCN
    23. MS-CNN
    24. PVANET
    25. GBD-Net
    26. StuffNet
    27. Feature Pyramid Network (FPN)
    28. CC-Net
    29. DSOD
    30. NMS
    31. Weakly Supervised Object Detection
  3. Detection From Video
    1. T-CNN
  4. Object Detection in 3D
  5. Object Detection on RGB-D
  6. Salient Object Detection
    1. Saliency Detection in Video
  7. Visual Relationship Detection
  8. Specific Object Deteciton
    1. Face Deteciton
      1. UnitBox
      2. MTCNN
    2. Facial Point / Landmark Detection
  9. People Detection
    1. Person Head Detection
    2. Pedestrian Detection
    3. Vehicle Detection
    4. Traffic-Sign Detection
    5. Boundary / Edge / Contour Detection
    6. Skeleton Detection
    7. Fruit Detection
    8. Part Detection
  10. Object Proposal
  11. Localization
  12. Tutorials / Talks
  13. Projects
  14. Tools
  15. Blogs
Method VOC2007 VOC2010 VOC2012 ILSVRC 2013 MSCOCO 2015 Speed
OverFeat       24.3%    
R-CNN (AlexNet) 58.5% 53.7% 53.3% 31.4%    
R-CNN (VGG16) 66.0%          
SPP_net(ZF-5) 54.2%(1-model), 60.9%(2-model)     31.84%(1-model), 35.11%(6-model)    
DeepID-Net 64.1%     50.3%    
NoC 73.3%   68.8%      
Fast-RCNN (VGG16) 70.0% 68.8% 68.4%   19.7%(@[0.5-0.95]), 35.9%(@0.5)  
MR-CNN 78.2%   73.9%      
Faster-RCNN (VGG16) 78.8%   75.9%   21.9%(@[0.5-0.95]), 42.7%(@0.5) 198ms
Faster-RCNN (ResNet-101) 85.6%   83.8%   37.4%(@[0.5-0.95]), 59.0%(@0.5)  
YOLO 63.4%   57.9%     45 fps
YOLO VGG-16 66.4%         21 fps
YOLOv2 544 × 544 78.6%   73.4%   21.6%(@[0.5-0.95]), 44.0%(@0.5) 40 fps
SSD300 (VGG16) 77.2%   75.8%   25.1%(@[0.5-0.95]), 43.1%(@0.5) 46 fps
SSD512 (VGG16) 79.8%   78.5%   28.8%(@[0.5-0.95]), 48.5%(@0.5) 19 fps
ION 79.2%   76.4%      
CRAFT 75.7%   71.3% 48.5%    
OHEM 78.9%   76.3%   25.5%(@[0.5-0.95]), 45.9%(@0.5)  
R-FCN (ResNet-50) 77.4%         0.12sec(K40), 0.09sec(TitianX)
R-FCN (ResNet-101) 79.5%         0.17sec(K40), 0.12sec(TitianX)
R-FCN (ResNet-101),multi sc train 83.6%   82.0%   31.5%(@[0.5-0.95]), 53.2%(@0.5)  
PVANet 9.0 89.8%   84.2%     750ms(CPU), 46ms(TitianX)

Leaderboard

Detection Results: VOC2012

  • intro: Competition “comp4” (train on additional data)
  • homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

Papers

Deep Neural Networks for Object Detection

  • paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

  • arxiv: http://arxiv.org/abs/1312.6229
  • github: https://github.com/sermanet/OverFeat
  • code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

  • intro: R-CNN
  • arxiv: http://arxiv.org/abs/1311.2524
  • supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
  • slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
  • slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
  • github: https://github.com/rbgirshick/rcnn
  • notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
  • caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482

Fast R-CNN

Fast R-CNN

  • arxiv: http://arxiv.org/abs/1504.08083
  • slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
  • github: https://github.com/rbgirshick/fast-rcnn
  • github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco
  • webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
  • notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
  • notes: http://blog.csdn.net/linj_m/article/details/48930179
  • github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
  • github: https://github.com/mahyarnajibi/fast-rcnn-torch
  • github: https://github.com/apple2373/chainer-simple-fast-rnn
  • github: https://github.com/zplizzi/tensorflow-fast-rcnn

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03414
  • paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
  • github(Caffe): https://github.com/xiaolonw/adversarial-frcnn

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

  • intro: NIPS 2015
  • arxiv: http://arxiv.org/abs/1506.01497
  • gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
  • slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
  • github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
  • github: https://github.com/rbgirshick/py-faster-rcnn
  • github: https://github.com/mitmul/chainer-faster-rcnn
  • github: https://github.com/andreaskoepf/faster-rcnn.torch
  • github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
  • github: https://github.com/smallcorgi/Faster-RCNN_TF
  • github: https://github.com/CharlesShang/TFFRCNN
  • github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
  • github: https://github.com/yhenon/keras-frcnn

Faster R-CNN in MXNet with distributed implementation and data parallelization

  • github: https://github.com/dmlc/mxnet/tree/master/example/rcnn

Contextual Priming and Feedback for Faster R-CNN

  • intro: ECCV 2016. Carnegie Mellon University
  • paper: http://abhinavsh.info/context_priming_feedback.pdf
  • poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf

An Implementation of Faster RCNN with Study for Region Sampling

  • intro: Technical Report, 3 pages. CMU
  • arxiv: https://arxiv.org/abs/1702.02138
  • github: https://github.com/endernewton/tf-faster-rcnn

MultiBox

Scalable Object Detection using Deep Neural Networks

  • intro: first MultiBox. Train a CNN to predict Region of Interest.
  • arxiv: http://arxiv.org/abs/1312.2249
  • github: https://github.com/google/multibox
  • blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

Scalable, High-Quality Object Detection

  • intro: second MultiBox
  • arxiv: http://arxiv.org/abs/1412.1441
  • github: https://github.com/google/multibox

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

  • intro: ECCV 2014 / TPAMI 2015
  • arxiv: http://arxiv.org/abs/1406.4729
  • github: https://github.com/ShaoqingRen/SPP_net
  • notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

  • intro: PAMI 2016
  • intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
  • project page: http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html
  • arxiv: http://arxiv.org/abs/1412.5661

Object Detectors Emerge in Deep Scene CNNs

  • intro: ICLR 2015
  • arxiv: http://arxiv.org/abs/1412.6856
  • paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
  • paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
  • slides: http://places.csail.mit.edu/slide_iclr2015.pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

  • intro: CVPR 2015
  • project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
  • arxiv: https://arxiv.org/abs/1502.04275
  • github: https://github.com/YknZhu/segDeepM

NoC

Object Detection Networks on Convolutional Feature Maps

  • intro: TPAMI 2015
  • arxiv: http://arxiv.org/abs/1504.06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

  • arxiv: http://arxiv.org/abs/1504.03293
  • slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
  • github: https://github.com/YutingZhang/fgs-obj

DeepBox

DeepBox: Learning Objectness with Convolutional Networks

  • arxiv: http://arxiv.org/abs/1505.02146
  • github: https://github.com/weichengkuo/DeepBox

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model

  • intro: ICCV 2015. MR-CNN
  • arxiv: http://arxiv.org/abs/1505.01749
  • github: https://github.com/gidariss/mrcnn-object-detection
  • notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/
  • notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/

YOLO

You Only Look Once: Unified, Real-Time Object Detection

  • arxiv: http://arxiv.org/abs/1506.02640
  • code: http://pjreddie.com/darknet/yolo/
  • github: https://github.com/pjreddie/darknet
  • blog: https://pjreddie.com/publications/yolo/
  • slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
  • reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
  • github: https://github.com/gliese581gg/YOLO_tensorflow
  • github: https://github.com/xingwangsfu/caffe-yolo
  • github: https://github.com/frankzhangrui/Darknet-Yolo
  • github: https://github.com/BriSkyHekun/py-darknet-yolo
  • github: https://github.com/tommy-qichang/yolo.torch
  • github: https://github.com/frischzenger/yolo-windows
  • github: https://github.com/AlexeyAB/yolo-windows
  • github: https://github.com/nilboy/tensorflow-yolo

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

  • blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
  • github: https://github.com/thtrieu/darkflow

Start Training YOLO with Our Own Data

  • intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
  • blog: http://guanghan.info/blog/en/my-works/train-yolo/
  • github: https://github.com/Guanghan/darknet

YOLO: Core ML versus MPSNNGraph

  • intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
  • blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
  • github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph

TensorFlow YOLO object detection on Android

  • intro: Real-time object detection on Android using the YOLO network with TensorFlow
  • github: https://github.com/natanielruiz/android-yolo

Computer Vision in iOS – Object Detection

  • blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
  • github:https://github.com/r4ghu/iOS-CoreML-Yolo

YOLOv2

YOLO9000: Better, Faster, Stronger

  • arxiv: https://arxiv.org/abs/1612.08242
  • code: http://pjreddie.com/yolo9000/
  • github(Chainer): https://github.com/leetenki/YOLOv2
  • github(Keras): https://github.com/allanzelener/YAD2K
  • github(PyTorch): https://github.com/longcw/yolo2-pytorch
  • github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
  • github(Windows): https://github.com/AlexeyAB/darknet
  • github: https://github.com/choasUp/caffe-yolo9000
  • github: https://github.com/philipperemy/yolo-9000

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

  • github: https://github.com/AlexeyAB/Yolo_mark

R-CNN minus R

  • arxiv: http://arxiv.org/abs/1506.06981

AttentionNet

AttentionNet: Aggregating Weak Directions for Accurate Object Detection

  • intro: ICCV 2015
  • intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task
  • arxiv: http://arxiv.org/abs/1506.07704
  • slides: https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf
  • slides: http://image-net.org/challenges/talks/lunit-kaist-slide.pdf

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

  • arxiv: http://arxiv.org/abs/1509.04874
  • demo: http://pan.baidu.com/s/1mgoWWsS
  • KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php

SSD

SSD: Single Shot MultiBox Detector

  • intro: ECCV 2016 Oral
  • arxiv: http://arxiv.org/abs/1512.02325
  • paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
  • slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf
  • github(Official): https://github.com/weiliu89/caffe/tree/ssd
  • video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
  • github: https://github.com/zhreshold/mxnet-ssd
  • github: https://github.com/zhreshold/mxnet-ssd.cpp
  • github: https://github.com/rykov8/ssd_keras
  • github: https://github.com/balancap/SSD-Tensorflow
  • github: https://github.com/amdegroot/ssd.pytorch
  • github(Caffe): https://github.com/chuanqi305/MobileNet-SSD

What’s the diffience in performance between this new code you pushed and the previous code? #327

https://github.com/weiliu89/caffe/issues/327

Enhancement of SSD by concatenating feature maps for object detection

  • intro: rainbow SSD (R-SSD)
  • arxiv: https://arxiv.org/abs/1705.09587

DSSD

DSSD : Deconvolutional Single Shot Detector

  • intro: UNC Chapel Hill & Amazon Inc
  • arxiv: https://arxiv.org/abs/1701.06659
  • demo: http://120.52.72.53/www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4

Context-aware Single-Shot Detector

  • keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
  • arxiv: https://arxiv.org/abs/1707.08682

Feature-Fused SSD: Fast Detection for Small Objects

https://arxiv.org/abs/1709.05054


Inside-Outside Net (ION)

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

  • intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
  • arxiv: http://arxiv.org/abs/1512.04143
  • slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf
  • coco-leaderboard: http://mscoco.org/dataset/#detections-leaderboard

Adaptive Object Detection Using Adjacency and Zoom Prediction

  • intro: CVPR 2016. AZ-Net
  • arxiv: http://arxiv.org/abs/1512.07711
  • github: https://github.com/luyongxi/az-net
  • youtube: https://www.youtube.com/watch?v=YmFtuNwxaNM

G-CNN

G-CNN: an Iterative Grid Based Object Detector

  • arxiv: http://arxiv.org/abs/1512.07729

Factors in Finetuning Deep Model for object detection

Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

  • intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection
  • project page: http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html
  • arxiv: http://arxiv.org/abs/1601.05150

We don’t need no bounding-boxes: Training object class detectors using only human verification

  • arxiv: http://arxiv.org/abs/1602.08405

HyperNet

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

  • arxiv: http://arxiv.org/abs/1604.00600

MultiPathNet

A MultiPath Network for Object Detection

  • intro: BMVC 2016. Facebook AI Research (FAIR)
  • arxiv: http://arxiv.org/abs/1604.02135
  • github: https://github.com/facebookresearch/multipathnet

CRAFT

CRAFT Objects from Images

  • intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
  • project page: http://byangderek.github.io/projects/craft.html
  • arxiv: https://arxiv.org/abs/1604.03239
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf
  • github: https://github.com/byangderek/CRAFT

OHEM

Training Region-based Object Detectors with Online Hard Example Mining

  • intro: CVPR 2016 Oral. Online hard example mining (OHEM)
  • arxiv: http://arxiv.org/abs/1604.03540
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf
  • github(Official): https://github.com/abhi2610/ohem
  • author page: http://abhinav-shrivastava.info/

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

  • intro: CVPR 2016
  • keywords: scale-dependent pooling (SDP), cascaded rejection classifiers (CRC)
  • paper: http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

  • arxiv: http://arxiv.org/abs/1605.06409
  • github: https://github.com/daijifeng001/R-FCN
  • github: https://github.com/Orpine/py-R-FCN
  • github: https://github.com/PureDiors/pytorch_RFCN
  • github: https://github.com/bharatsingh430/py-R-FCN-multiGPU
  • github: https://github.com/xdever/RFCN-tensorflow

Recycle deep features for better object detection

  • arxiv: http://arxiv.org/abs/1607.05066

MS-CNN

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

  • intro: ECCV 2016
  • intro: 640×480: 15 fps, 960×720: 8 fps
  • arxiv: http://arxiv.org/abs/1607.07155
  • github: https://github.com/zhaoweicai/mscnn
  • poster: http://www.eccv2016.org/files/posters/P-2B-38.pdf

Multi-stage Object Detection with Group Recursive Learning

  • intro: VOC2007: 78.6%, VOC2012: 74.9%
  • arxiv: http://arxiv.org/abs/1608.05159

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

  • intro: WACV 2017. SubCNN
  • arxiv: http://arxiv.org/abs/1604.04693
  • github: https://github.com/tanshen/SubCNN

PVANET

PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

  • intro: “less channels with more layers”, concatenated ReLU, Inception, and HyperNet, batch normalization, residual connections
  • arxiv: http://arxiv.org/abs/1608.08021
  • github: https://github.com/sanghoon/pva-faster-rcnn
  • leaderboard(PVANet 9.0): http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

  • intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021
  • arxiv: https://arxiv.org/abs/1611.08588

GBD-Net

Gated Bi-directional CNN for Object Detection

  • intro: The Chinese University of Hong Kong & Sensetime Group Limited
  • paper: http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22
  • mirror: https://pan.baidu.com/s/1dFohO7v

Crafting GBD-Net for Object Detection

  • intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo
  • intro: gated bi-directional CNN (GBD-Net)
  • arxiv: https://arxiv.org/abs/1610.02579
  • github: https://github.com/craftGBD/craftGBD

StuffNet

StuffNet: Using ‘Stuff’ to Improve Object Detection

  • arxiv: https://arxiv.org/abs/1610.05861

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

  • arxiv: https://arxiv.org/abs/1610.09609

Hierarchical Object Detection with Deep Reinforcement Learning

  • intro: Deep Reinforcement Learning Workshop (NIPS 2016)
  • project page: https://imatge-upc.github.io/detection-2016-nipsws/
  • arxiv: https://arxiv.org/abs/1611.03718
  • slides: http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learning
  • github: https://github.com/imatge-upc/detection-2016-nipsws
  • blog: http://jorditorres.org/nips/

Learning to detect and localize many objects from few examples

  • arxiv: https://arxiv.org/abs/1611.05664

Speed/accuracy trade-offs for modern convolutional object detectors

  • intro: Google Research
  • arxiv: https://arxiv.org/abs/1611.10012

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

  • arxiv: https://arxiv.org/abs/1612.01051
  • github: https://github.com/BichenWuUCB/squeezeDet
  • github: https://github.com/fregu856/2D_detection

Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

  • intro: Facebook AI Research
  • arxiv: https://arxiv.org/abs/1612.03144

Action-Driven Object Detection with Top-Down Visual Attentions

  • arxiv: https://arxiv.org/abs/1612.06704

Beyond Skip Connections: Top-Down Modulation for Object Detection

  • intro: CMU & UC Berkeley & Google Research
  • arxiv: https://arxiv.org/abs/1612.06851

Wide-Residual-Inception Networks for Real-time Object Detection

  • intro: Inha University
  • arxiv: https://arxiv.org/abs/1702.01243

Attentional Network for Visual Object Detection

  • intro: University of Maryland & Mitsubishi Electric Research Laboratories
  • arxiv: https://arxiv.org/abs/1702.01478

CC-Net

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

  • intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
  • arxiv: https://arxiv.org/abs/1702.07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

https://arxiv.org/abs/1703.10295

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03944

Spatial Memory for Context Reasoning in Object Detection

  • arxiv: https://arxiv.org/abs/1704.04224

Accurate Single Stage Detector Using Recurrent Rolling Convolution

  • intro: CVPR 2017. SenseTime
  • keywords: Recurrent Rolling Convolution (RRC)
  • arxiv: https://arxiv.org/abs/1704.05776
  • github: https://github.com/xiaohaoChen/rrc_detection

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

https://arxiv.org/abs/1704.05775

S-OHEM: Stratified Online Hard Example Mining for Object Detection

https://arxiv.org/abs/1705.02233

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

  • intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
  • arxiv: https://arxiv.org/abs/1705.05922

Point Linking Network for Object Detection

  • intro: Point Linking Network (PLN)
  • arxiv: https://arxiv.org/abs/1706.03646

Perceptual Generative Adversarial Networks for Small Object Detection

https://arxiv.org/abs/1706.05274

Few-shot Object Detection

https://arxiv.org/abs/1706.08249

Yes-Net: An effective Detector Based on Global Information

https://arxiv.org/abs/1706.09180

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

https://arxiv.org/abs/1706.10217

Towards lightweight convolutional neural networks for object detection

https://arxiv.org/abs/1707.01395

RON: Reverse Connection with Objectness Prior Networks for Object Detection

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1707.01691
  • github: https://github.com/taokong/RON

Residual Features and Unified Prediction Network for Single Stage Detection

https://arxiv.org/abs/1707.05031

Deformable Part-based Fully Convolutional Network for Object Detection

  • intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
  • arxiv: https://arxiv.org/abs/1707.06175

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1707.06399

Recurrent Scale Approximation for Object Detection in CNN

  • intro: ICCV 2017
  • keywords: Recurrent Scale Approximation (RSA)
  • arxiv: https://arxiv.org/abs/1707.09531
  • github: https://github.com/sciencefans/RSA-for-object-detection

DSOD

DSOD: Learning Deeply Supervised Object Detectors from Scratch

  • intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
  • arxiv: https://arxiv.org/abs/1708.01241
  • github: https://github.com/szq0214/DSOD

Focal Loss for Dense Object Detection

  • intro: ICCV 2017 Best student paper award. Facebook AI Research
  • keywords: RetinaNet
  • arxiv: https://arxiv.org/abs/1708.02002

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.02863

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

https://arxiv.org/abs/1709.04347

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

https://arxiv.org/abs/1709.05788

NMS

End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression

  • intro: CVPR 2015
  • arxiv: http://arxiv.org/abs/1411.5309
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wan_End-to-End_Integration_of_2015_CVPR_paper.pdf

A convnet for non-maximum suppression

  • arxiv: http://arxiv.org/abs/1511.06437

Improving Object Detection With One Line of Code

Soft-NMS – Improving Object Detection With One Line of Code

  • intro: ICCV 2017. University of Maryland
  • keywords: Soft-NMS
  • arxiv: https://arxiv.org/abs/1704.04503
  • github: https://github.com/bharatsingh430/soft-nms

Learning non-maximum suppression

https://arxiv.org/abs/1705.02950

Weakly Supervised Object Detection

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1604.05766

Weakly supervised object detection using pseudo-strong labels

  • arxiv: http://arxiv.org/abs/1607.04731

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

  • intro: IJCAI 2017
  • arxiv: https://arxiv.org/abs/1706.06768

Detection From Video

Learning Object Class Detectors from Weakly Annotated Video

  • intro: CVPR 2012
  • paper: https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf

Analysing domain shift factors between videos and images for object detection

  • arxiv: https://arxiv.org/abs/1501.01186

Video Object Recognition

  • slides: http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video%20Object%20Recognition.pptx

Deep Learning for Saliency Prediction in Natural Video

  • intro: Submitted on 12 Jan 2016
  • keywords: Deep learning, saliency map, optical flow, convolution network, contrast features
  • paper: https://hal.archives-ouvertes.fr/hal-01251614/document

T-CNN

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

  • intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task
  • arxiv: http://arxiv.org/abs/1604.02532
  • github: https://github.com/myfavouritekk/T-CNN

Object Detection from Video Tubelets with Convolutional Neural Networks

  • intro: CVPR 2016 Spotlight paper
  • arxiv: https://arxiv.org/abs/1604.04053
  • paper: http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf
  • gihtub: https://github.com/myfavouritekk/vdetlib

Object Detection in Videos with Tubelets and Multi-context Cues

  • intro: SenseTime Group
  • slides: http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf
  • slides: http://image-net.org/challenges/talks/Object%20Detection%20in%20Videos%20with%20Tubelets%20and%20Multi-context%20Cues%20-%20Final.pdf

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

  • intro: BMVC 2016
  • keywords: pseudo-labeler
  • arxiv: http://arxiv.org/abs/1607.04648
  • paper: http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf

CNN Based Object Detection in Large Video Images

  • intro: WangTao @ 爱奇艺
  • keywords: object retrieval, object detection, scene classification
  • slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

Object Detection in Videos with Tubelet Proposal Networks

  • arxiv: https://arxiv.org/abs/1702.06355

Flow-Guided Feature Aggregation for Video Object Detection

  • intro: MSRA
  • arxiv: https://arxiv.org/abs/1703.10025

Video Object Detection using Faster R-CNN

  • blog: http://andrewliao11.github.io/object_detection/faster_rcnn/
  • github: https://github.com/andrewliao11/py-faster-rcnn-imagenet

Improving Context Modeling for Video Object Detection and Tracking

http://image-net.org/challenges/talks_2017/ilsvrc2017_short(poster).pdf

Temporal Dynamic Graph LSTM for Action-driven Video Object Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.00666

Object Detection in 3D

Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

  • arxiv: https://arxiv.org/abs/1609.06666

Object Detection on RGB-D

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

  • arxiv: http://arxiv.org/abs/1407.5736

Differential Geometry Boosts Convolutional Neural Networks for Object Detection

  • intro: CVPR 2016
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w23/html/Wang_Differential_Geometry_Boosts_CVPR_2016_paper.html

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

https://arxiv.org/abs/1703.03347

Salient Object Detection

This task involves predicting the salient regions of an image given by human eye fixations.

Best Deep Saliency Detection Models (CVPR 2016 & 2015)

http://i.cs.hku.hk/~yzyu/vision.html

Large-scale optimization of hierarchical features for saliency prediction in natural images

  • paper: http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf

Predicting Eye Fixations using Convolutional Neural Networks

  • paper: http://www.escience.cn/system/file?fileId=72648

Saliency Detection by Multi-Context Deep Learning

  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

  • arxiv: http://arxiv.org/abs/1510.05484

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

  • paper: www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

Shallow and Deep Convolutional Networks for Saliency Prediction

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1603.00845
  • github: https://github.com/imatge-upc/saliency-2016-cvpr

Recurrent Attentional Networks for Saliency Detection

  • intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)
  • arxiv: http://arxiv.org/abs/1604.03227

Two-Stream Convolutional Networks for Dynamic Saliency Prediction

  • arxiv: http://arxiv.org/abs/1607.04730

Unconstrained Salient Object Detection

Unconstrained Salient Object Detection via Proposal Subset Optimization

  • intro: CVPR 2016
  • project page: http://cs-people.bu.edu/jmzhang/sod.html
  • paper: http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf
  • github: https://github.com/jimmie33/SOD
  • caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection

DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf

Salient Object Subitizing

  • intro: CVPR 2015
  • intro: predicting the existence and the number of salient objects in an image using holistic cues
  • project page: http://cs-people.bu.edu/jmzhang/sos.html
  • arxiv: http://arxiv.org/abs/1607.07525
  • paper: http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf
  • caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing

Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

  • intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)
  • arxiv: http://arxiv.org/abs/1608.05177

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1608.05186

Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

  • arxiv: http://arxiv.org/abs/1608.08029

A Deep Multi-Level Network for Saliency Prediction

  • arxiv: http://arxiv.org/abs/1609.01064

Visual Saliency Detection Based on Multiscale Deep CNN Features

  • intro: IEEE Transactions on Image Processing
  • arxiv: http://arxiv.org/abs/1609.02077

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

  • intro: DSCLRCN
  • arxiv: https://arxiv.org/abs/1610.01708

Deeply supervised salient object detection with short connections

  • arxiv: https://arxiv.org/abs/1611.04849

Weakly Supervised Top-down Salient Object Detection

  • intro: Nanyang Technological University
  • arxiv: https://arxiv.org/abs/1611.05345

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

  • project page: https://imatge-upc.github.io/saliency-salgan-2017/
  • arxiv: https://arxiv.org/abs/1701.01081

Visual Saliency Prediction Using a Mixture of Deep Neural Networks

  • arxiv: https://arxiv.org/abs/1702.00372

A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network

  • arxiv: https://arxiv.org/abs/1702.00615

Saliency Detection by Forward and Backward Cues in Deep-CNNs

https://arxiv.org/abs/1703.00152

Supervised Adversarial Networks for Image Saliency Detection

https://arxiv.org/abs/1704.07242

Group-wise Deep Co-saliency Detection

https://arxiv.org/abs/1707.07381

Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection

  • intro: University of Maryland College Park & eBay Inc
  • arxiv: https://arxiv.org/abs/1708.00079

Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection

  • intro: ICCV 2017
  • arixv: https://arxiv.org/abs/1708.02001

Learning Uncertain Convolutional Features for Accurate Saliency Detection

  • intro: Accepted as a poster in ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.02031

Deep Edge-Aware Saliency Detection

https://arxiv.org/abs/1708.04366

Self-explanatory Deep Salient Object Detection

  • intro: National University of Defense Technology, China & National University of Singapore
  • arxiv: https://arxiv.org/abs/1708.05595

PiCANet: Learning Pixel-wise Contextual Attention in ConvNets and Its Application in Saliency Detection

https://arxiv.org/abs/1708.06433

DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets

https://arxiv.org/abs/1709.02495

Saliency Detection in Video

Deep Learning For Video Saliency Detection

  • arxiv: https://arxiv.org/abs/1702.00871

Video Salient Object Detection Using Spatiotemporal Deep Features

https://arxiv.org/abs/1708.01447

Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

https://arxiv.org/abs/1709.06316

Visual Relationship Detection

Visual Relationship Detection with Language Priors

  • intro: ECCV 2016 oral
  • paper: https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf
  • github: https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection

ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection

  • intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS)
  • arxiv: https://arxiv.org/abs/1702.07191

Visual Translation Embedding Network for Visual Relation Detection

  • arxiv: https://www.arxiv.org/abs/1702.08319

Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection

  • intro: CVPR 2017 spotlight paper
  • arxiv: https://arxiv.org/abs/1703.03054

Detecting Visual Relationships with Deep Relational Networks

  • intro: CVPR 2017 oral. The Chinese University of Hong Kong
  • arxiv: https://arxiv.org/abs/1704.03114

Identifying Spatial Relations in Images using Convolutional Neural Networks

https://arxiv.org/abs/1706.04215

PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN

  • intro: ICCV
  • arxiv: https://arxiv.org/abs/1708.01956

Specific Object Deteciton

Deep Deformation Network for Object Landmark Localization

  • arxiv: http://arxiv.org/abs/1605.01014

Fashion Landmark Detection in the Wild

  • intro: ECCV 2016
  • project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/FashionLandmarks.html
  • arxiv: http://arxiv.org/abs/1608.03049
  • github(Caffe): https://github.com/liuziwei7/fashion-landmarks

Deep Learning for Fast and Accurate Fashion Item Detection

  • intro: Kuznech Inc.
  • intro: MultiBox and Fast R-CNN
  • paper: https://kddfashion2016.mybluemix.net/kddfashion_finalSubmissions/Deep%20Learning%20for%20Fast%20and%20Accurate%20Fashion%20Item%20Detection.pdf

OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

  • github: https://github.com/geometalab/OSMDeepOD

Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

  • intro: IEEE SITIS 2016
  • arxiv: https://arxiv.org/abs/1611.04357

Associative Embedding:End-to-End Learning for Joint Detection and Grouping

  • arxiv: https://arxiv.org/abs/1611.05424

Deep Cuboid Detection: Beyond 2D Bounding Boxes

  • intro: CMU & Magic Leap
  • arxiv: https://arxiv.org/abs/1611.10010

Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

  • arxiv: https://arxiv.org/abs/1612.03019

Deep Learning Logo Detection with Data Expansion by Synthesising Context

  • arxiv: https://arxiv.org/abs/1612.09322

Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks

  • arxiv: https://arxiv.org/abs/1702.00307

Automatic Handgun Detection Alarm in Videos Using Deep Learning

  • arxiv: https://arxiv.org/abs/1702.05147
  • results: https://github.com/SihamTabik/Pistol-Detection-in-Videos

Using Deep Networks for Drone Detection

  • intro: AVSS 2017
  • arxiv: https://arxiv.org/abs/1706.05726

Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.01642

DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion

https://arxiv.org/abs/1709.04577

Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network

https://arxiv.org/abs/1709.09283

Face Deteciton

Multi-view Face Detection Using Deep Convolutional Neural Networks

  • intro: Yahoo
  • arxiv: http://arxiv.org/abs/1502.02766
  • github: https://github.com/guoyilin/FaceDetection_CNN

From Facial Parts Responses to Face Detection: A Deep Learning Approach

  • intro: ICCV 2015. CUHK
  • project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html
  • arxiv: https://arxiv.org/abs/1509.06451
  • paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_From_Facial_Parts_ICCV_2015_paper.pdf

Compact Convolutional Neural Network Cascade for Face Detection

  • arxiv: http://arxiv.org/abs/1508.01292
  • github: https://github.com/Bkmz21/FD-Evaluation
  • github: https://github.com/Bkmz21/CompactCNNCascade

Face Detection with End-to-End Integration of a ConvNet and a 3D Model

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1606.00850
  • github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D

CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

  • intro: CMU
  • arxiv: https://arxiv.org/abs/1606.05413

Finding Tiny Faces

  • intro: CVPR 2017. CMU
  • project page: http://www.cs.cmu.edu/~peiyunh/tiny/index.html
  • arxiv: https://arxiv.org/abs/1612.04402
  • github: https://github.com/peiyunh/tiny
  • github(inference-only): https://github.com/chinakook/hr101_mxnet

Towards a Deep Learning Framework for Unconstrained Face Detection

  • intro: overlap with CMS-RCNN
  • arxiv: https://arxiv.org/abs/1612.05322

Supervised Transformer Network for Efficient Face Detection

  • arxiv: http://arxiv.org/abs/1607.05477

UnitBox

UnitBox: An Advanced Object Detection Network

  • intro: ACM MM 2016
  • arxiv: http://arxiv.org/abs/1608.01471

Bootstrapping Face Detection with Hard Negative Examples

  • author: 万韶华 @ 小米.
  • intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
  • arxiv: http://arxiv.org/abs/1608.02236

Grid Loss: Detecting Occluded Faces

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1609.00129
  • paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf
  • poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf

A Multi-Scale Cascade Fully Convolutional Network Face Detector

  • intro: ICPR 2016
  • arxiv: http://arxiv.org/abs/1609.03536

MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

  • project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
  • arxiv: https://arxiv.org/abs/1604.02878
  • github(Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment
  • github: https://github.com/pangyupo/mxnet_mtcnn_face_detection
  • github: https://github.com/DaFuCoding/MTCNN_Caffe
  • github(MXNet): https://github.com/Seanlinx/mtcnn
  • github: https://github.com/Pi-DeepLearning/RaspberryPi-FaceDetection-MTCNN-Caffe-With-Motion
  • github(Caffe): https://github.com/foreverYoungGitHub/MTCNN
  • github: https://github.com/CongWeilin/mtcnn-caffe
  • github: https://github.com/AlphaQi/MTCNN-light

Face Detection using Deep Learning: An Improved Faster RCNN Approach

  • intro: DeepIR Inc
  • arxiv: https://arxiv.org/abs/1701.08289

Faceness-Net: Face Detection through Deep Facial Part Responses

  • intro: An extended version of ICCV 2015 paper
  • arxiv: https://arxiv.org/abs/1701.08393

Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”

  • intro: CVPR 2017. MP-RCNN, MP-RPN
  • arxiv: https://arxiv.org/abs/1703.09145

End-To-End Face Detection and Recognition

https://arxiv.org/abs/1703.10818

Face R-CNN

https://arxiv.org/abs/1706.01061

Face Detection through Scale-Friendly Deep Convolutional Networks

https://arxiv.org/abs/1706.02863

Scale-Aware Face Detection

  • intro: CVPR 2017. SenseTime & Tsinghua University
  • arxiv: https://arxiv.org/abs/1706.09876

Multi-Branch Fully Convolutional Network for Face Detection

https://arxiv.org/abs/1707.06330

SSH: Single Stage Headless Face Detector

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.03979

Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container

https://arxiv.org/abs/1708.04370

FaceBoxes: A CPU Real-time Face Detector with High Accuracy

  • intro: IJCB 2017
  • keywords: Rapidly Digested Convolutional Layers (RDCL), Multiple Scale Convolutional Layers (MSCL)
  • intro: the proposed detector runs at 20 FPS on a single CPU core and 125 FPS using a GPU for VGA-resolution images
  • arxiv: https://arxiv.org/abs/1708.05234

S3FD: Single Shot Scale-invariant Face Detector

  • intro: ICCV 2017
  • intro: can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images
  • arxiv: https://arxiv.org/abs/1708.05237

Detecting Faces Using Region-based Fully Convolutional Networks

https://arxiv.org/abs/1709.05256

AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection

https://arxiv.org/abs/1709.07326

Facial Point / Landmark Detection

Deep Convolutional Network Cascade for Facial Point Detection

  • homepage: http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm
  • paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr13.pdf
  • github: https://github.com/luoyetx/deep-landmark

Facial Landmark Detection by Deep Multi-task Learning

  • intro: ECCV 2014
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html
  • paper: http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf
  • github(Matlab): https://github.com/zhzhanp/TCDCN-face-alignment

A Recurrent Encoder-Decoder Network for Sequential Face Alignment

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1608.05477

Detecting facial landmarks in the video based on a hybrid framework

  • arxiv: http://arxiv.org/abs/1609.06441

Deep Constrained Local Models for Facial Landmark Detection

  • arxiv: https://arxiv.org/abs/1611.08657

Effective face landmark localization via single deep network

  • arxiv: https://arxiv.org/abs/1702.02719

A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

https://arxiv.org/abs/1704.01880

Deep Alignment Network: A convolutional neural network for robust face alignment

  • intro: CVPRW 2017
  • arxiv: https://arxiv.org/abs/1706.01789
  • gihtub: https://github.com/MarekKowalski/DeepAlignmentNetwork

Joint Multi-view Face Alignment in the Wild

https://arxiv.org/abs/1708.06023

FacePoseNet: Making a Case for Landmark-Free Face Alignment

https://arxiv.org/abs/1708.07517

People Detection

End-to-end people detection in crowded scenes

  • arxiv: http://arxiv.org/abs/1506.04878
  • github: https://github.com/Russell91/reinspect
  • ipn: http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb
  • youtube: https://www.youtube.com/watch?v=QeWl0h3kQ24

Detecting People in Artwork with CNNs

  • intro: ECCV 2016 Workshops
  • arxiv: https://arxiv.org/abs/1610.08871

Deep Multi-camera People Detection

  • arxiv: https://arxiv.org/abs/1702.04593

Person Head Detection

Context-aware CNNs for person head detection

  • intro: ICCV 2015
  • project page: http://www.di.ens.fr/willow/research/headdetection/
  • arxiv: http://arxiv.org/abs/1511.07917
  • github: https://github.com/aosokin/cnn_head_detection

Pedestrian Detection

Pedestrian Detection aided by Deep Learning Semantic Tasks

  • intro: CVPR 2015
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
  • arxiv: http://arxiv.org/abs/1412.0069

Deep Learning Strong Parts for Pedestrian Detection

  • intro: ICCV 2015. CUHK. DeepParts
  • intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
  • paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

Taking a Deeper Look at Pedestrians

  • intro: CVPR 2015
  • arxiv: https://arxiv.org/abs/1501.05790

Convolutional Channel Features

  • intro: ICCV 2015
  • arxiv: https://arxiv.org/abs/1504.07339
  • github: https://github.com/byangderek/CCF

Learning Complexity-Aware Cascades for Deep Pedestrian Detection

  • intro: ICCV 2015
  • arxiv: https://arxiv.org/abs/1507.05348

Deep convolutional neural networks for pedestrian detection

  • arxiv: http://arxiv.org/abs/1510.03608
  • github: https://github.com/DenisTome/DeepPed

Scale-aware Fast R-CNN for Pedestrian Detection

  • arxiv: https://arxiv.org/abs/1510.08160

New algorithm improves speed and accuracy of pedestrian detection

  • blog: http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php

Pushing the Limits of Deep CNNs for Pedestrian Detection

  • intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
  • arxiv: http://arxiv.org/abs/1603.04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

  • arxiv: http://arxiv.org/abs/1607.04436

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

  • arxiv: http://arxiv.org/abs/1607.04441

Is Faster R-CNN Doing Well for Pedestrian Detection?

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1607.07032
  • github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

Reduced Memory Region Based Deep Convolutional Neural Network Detection

  • intro: IEEE 2016 ICCE-Berlin
  • arxiv: http://arxiv.org/abs/1609.02500

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

  • arxiv: https://arxiv.org/abs/1610.03466

Multispectral Deep Neural Networks for Pedestrian Detection

  • intro: BMVC 2016 oral
  • arxiv: https://arxiv.org/abs/1611.02644

Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

  • intro: CVPR 2017
  • project page: http://ml.cs.tsinghua.edu.cn:5000/publications/synunity/
  • arxiv: https://arxiv.org/abs/1703.06283
  • github(Tensorflow): https://github.com/huangshiyu13/RPNplus

Illuminating Pedestrians via Simultaneous Detection & Segmentation

[https://arxiv.org/abs/1706.08564](https://arxiv.org/abs/1706.08564

Rotational Rectification Network for Robust Pedestrian Detection

  • intro: CMU & Volvo Construction
  • arxiv: https://arxiv.org/abs/1706.08917

STD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated Videos

  • intro: The University of North Carolina at Chapel Hill
  • arxiv: https://arxiv.org/abs/1707.09100

Too Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization Policy

https://arxiv.org/abs/1709.00235

Vehicle Detection

DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1607.04564

Evolving Boxes for fast Vehicle Detection

  • arxiv: https://arxiv.org/abs/1702.00254

Fine-Grained Car Detection for Visual Census Estimation

  • intro: AAAI 2016
  • arxiv: https://arxiv.org/abs/1709.02480

Traffic-Sign Detection

Traffic-Sign Detection and Classification in the Wild

  • project page(code+dataset): http://cg.cs.tsinghua.edu.cn/traffic-sign/
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
  • code & model: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip

Detecting Small Signs from Large Images

  • intro: IEEE Conference on Information Reuse and Integration (IRI) 2017 oral
  • arxiv: https://arxiv.org/abs/1706.08574

Boundary / Edge / Contour Detection

Holistically-Nested Edge Detection

  • intro: ICCV 2015, Marr Prize
  • paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf
  • arxiv: http://arxiv.org/abs/1504.06375
  • github: https://github.com/s9xie/hed

Unsupervised Learning of Edges

  • intro: CVPR 2016. Facebook AI Research
  • arxiv: http://arxiv.org/abs/1511.04166
  • zn-blog: http://www.leiphone.com/news/201607/b1trsg9j6GSMnjOP.html

Pushing the Boundaries of Boundary Detection using Deep Learning

  • arxiv: http://arxiv.org/abs/1511.07386

Convolutional Oriented Boundaries

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1608.02755

Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks

  • project page: http://www.vision.ee.ethz.ch/~cvlsegmentation/
  • arxiv: https://arxiv.org/abs/1701.04658
  • github: https://github.com/kmaninis/COB

Richer Convolutional Features for Edge Detection

  • intro: CVPR 2017
  • keywords: richer convolutional features (RCF)
  • arxiv: https://arxiv.org/abs/1612.02103
  • github: https://github.com/yun-liu/rcf

Contour Detection from Deep Patch-level Boundary Prediction

https://arxiv.org/abs/1705.03159

CASENet: Deep Category-Aware Semantic Edge Detection

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1705.09759

Skeleton Detection

Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

  • arxiv: http://arxiv.org/abs/1603.09446
  • github: https://github.com/zeakey/DeepSkeleton

DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

  • arxiv: http://arxiv.org/abs/1609.03659

SRN: Side-output Residual Network for Object Symmetry Detection in the Wild

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1703.02243
  • github: https://github.com/KevinKecc/SRN

Fruit Detection

Deep Fruit Detection in Orchards

  • arxiv: https://arxiv.org/abs/1610.03677

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

  • intro: The Journal of Field Robotics in May 2016
  • project page: http://confluence.acfr.usyd.edu.au/display/AGPub/
  • arxiv: https://arxiv.org/abs/1610.08120

Part Detection

Objects as context for part detection

https://arxiv.org/abs/1703.09529

Object Proposal

DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

  • arxiv: http://arxiv.org/abs/1510.04445
  • github: https://github.com/aghodrati/deepproposal

Scale-aware Pixel-wise Object Proposal Networks

  • intro: IEEE Transactions on Image Processing
  • arxiv: http://arxiv.org/abs/1601.04798

Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

  • intro: BMVC 2016. AttractioNet
  • arxiv: https://arxiv.org/abs/1606.04446
  • github: https://github.com/gidariss/AttractioNet

Learning to Segment Object Proposals via Recursive Neural Networks

  • arxiv: https://arxiv.org/abs/1612.01057

Learning Detection with Diverse Proposals

  • intro: CVPR 2017
  • keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
  • arxiv: https://arxiv.org/abs/1704.03533

ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond

  • keywords: product detection
  • arxiv: https://arxiv.org/abs/1704.06752

Improving Small Object Proposals for Company Logo Detection

  • intro: ICMR 2017
  • arxiv: https://arxiv.org/abs/1704.08881

Localization

Beyond Bounding Boxes: Precise Localization of Objects in Images

  • intro: PhD Thesis
  • homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
  • phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
  • github(“SDS using hypercolumns”): https://github.com/bharath272/sds

Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

  • arxiv: http://arxiv.org/abs/1503.00949

Weakly Supervised Object Localization Using Size Estimates

  • arxiv: http://arxiv.org/abs/1608.04314

Active Object Localization with Deep Reinforcement Learning

  • intro: ICCV 2015
  • keywords: Markov Decision Process
  • arxiv: https://arxiv.org/abs/1511.06015

Localizing objects using referring expressions

  • intro: ECCV 2016
  • keywords: LSTM, multiple instance learning (MIL)
  • paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
  • github: https://github.com/varun-nagaraja/referring-expressions

LocNet: Improving Localization Accuracy for Object Detection

  • intro: CVPR 2016 oral
  • arxiv: http://arxiv.org/abs/1511.07763
  • github: https://github.com/gidariss/LocNet

Learning Deep Features for Discriminative Localization

  • homepage: http://cnnlocalization.csail.mit.edu/
  • arxiv: http://arxiv.org/abs/1512.04150
  • github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
  • github: https://github.com/metalbubble/CAM
  • github: https://github.com/tdeboissiere/VGG16CAM-keras

ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

  • intro: ECCV 2016
  • project page: http://www.di.ens.fr/willow/research/contextlocnet/
  • arxiv: http://arxiv.org/abs/1609.04331
  • github: https://github.com/vadimkantorov/contextlocnet

Ensemble of Part Detectors for Simultaneous Classification and Localization

https://arxiv.org/abs/1705.10034

STNet: Selective Tuning of Convolutional Networks for Object Localization

https://arxiv.org/abs/1708.06418

Soft Proposal Networks for Weakly Supervised Object Localization

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1709.01829

Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

  • intro: ACM MM 2017
  • arxiv: https://arxiv.org/abs/1709.08295

Tutorials / Talks

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

  • slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

Towards Good Practices for Recognition & Detection

  • intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
  • slides: http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

Projects

TensorBox: a simple framework for training neural networks to detect objects in images

  • intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
  • github: https://github.com/Russell91/TensorBox

Object detection in torch: Implementation of some object detection frameworks in torch

  • github: https://github.com/fmassa/object-detection.torch

Using DIGITS to train an Object Detection network

  • github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

FCN-MultiBox Detector

  • intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
  • github: https://github.com/teaonly/FMD.torch

KittiBox: A car detection model implemented in Tensorflow.

  • keywords: MultiNet
  • intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
  • github: https://github.com/MarvinTeichmann/KittiBox

Deformable Convolutional Networks + MST + Soft-NMS

  • github: https://github.com/bharatsingh430/Deformable-ConvNets

Tools

BeaverDam: Video annotation tool for deep learning training labels

https://github.com/antingshen/BeaverDam

Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/

Introducing automatic object detection to visual search (Pinterest)

  • keywords: Faster R-CNN
  • blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
  • demo: https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4
  • review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

Deep Learning for Object Detection with DIGITS

  • blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

Analyzing The Papers Behind Facebook’s Computer Vision Approach

  • keywords: DeepMask, SharpMask, MultiPathNet
  • blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

Easily Create High Quality Object Detectors with Deep Learning

  • intro: dlib v19.2
  • blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

  • blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
  • github: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

Object Detection in Satellite Imagery, a Low Overhead Approach

  • part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
  • part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

  • part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
  • part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

Faster R-CNN Pedestrian and Car Detection

  • blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
  • ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
  • github: https://github.com/bigsnarfdude/Faster-RCNN_TF

Small U-Net for vehicle detection

  • blog: https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

Region of interest pooling explained

  • blog: https://deepsense.io/region-of-interest-pooling-explained/
  • github: https://github.com/deepsense-io/roi-pooling

Supercharge your Computer Vision models with the TensorFlow Object Detection API

  • blog: https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
  • github: https://github.com/tensorflow/models/tree/master/object_detection



你可能感兴趣的:(Object Detection--的一个好的对比总结文章)