计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度(Matlab代码实现)

欢迎来到本博客❤️❤️

博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

本文目录如下:

目录

1 概述

1.1 计及 P2G 协同的含碳捕集和垃圾焚烧 VPP 结构和基本原理

1.2 CCPP-P2G-燃气机组子系统

2 运行结果

3 Matlab代码实现

4 参考文献


1 概述

文献来源:

1.1 计及 P2G 协同的含碳捕集和垃圾焚烧 VPP 结构和基本原理

本文所提出的 VPP 系统构成如图 1 所示,其中包含有可灵活调控发电单元(火电机组和垃圾焚烧

电厂)、不可调控发电单元(风电和光伏)、P2G 装置、碳捕集系统、垃圾焚烧电厂的储气装置、电储能和热储能。电负荷由可中断负荷(interruptible load,IL)和固定负荷组成,切断 IL 时需按中断等级给予用户补偿费用[13]。燃气机组由热电联产(combined heat and power,CHP)机组和燃气锅炉组成,热负荷由两者协调提供。

除 CHP 机组外,各发电机组都可以向碳捕集系统和烟气处理系统提供能耗,通过加装储气装

 置,使得烟气处理与发电关系解耦,利用不同能量资源在能量/功率上的时空互补性,调度优化上更为灵活地配合可再生能源的出力变化和平抑净负荷波动。各单元的协同运行调度指令依靠能量管理系统采集数据信息后预测出的能量市场电价、可再生能源出力和电热负荷来制定[13]。

1.2 CCPP-P2G-燃气机组子系统

现有 VPP 文献涉及碳捕集电厂–P2G 系统框架的较少,且未有涉及参与燃气供热的综合调度。因

此,本文将碳捕集电厂、P2G 和燃气机组聚合为碳捕集–电转气–燃气机组供热(CCPP-P2G-燃气机组) 系统,将 CCPP 捕集的 CO2 作为优质原料提供给P2G 装置,利用 P2G 消纳弃风弃光生成天然气提供给燃气机组,P2G 生成天然气量和燃气机组天然气需求量的差值参与到天然气市场。CCPP-P2G-燃气供热系统不仅可减少捕集 CO2 后的封存成本,还可将弃风弃光转化成天然气储存于天然气网络,减少CHP 机组和燃气锅炉的购气成本,具有削峰填谷效应,实现了负荷的时空转移。框架如图 2 所示。

2 运行结果

 

 

 

 

 

PXPARAM_Simplex_Display                         2
CPXPARAM_MIP_Tolerances_MIPGap                   9.9999999999999995e-07
CPXPARAM_Barrier_Display                         2
Tried aggregator 2 times.
MIQP Presolve eliminated 1308 rows and 290 columns.
Aggregator did 288 substitutions.
Reduced MIQP has 533 rows, 598 columns, and 1820 nonzeros.
Reduced MIQP has 48 binaries, 0 generals, 0 SOSs, and 0 indicators.
Reduced MIQP objective Q matrix has 24 nonzeros.
Presolve time = 0.02 sec. (3.66 ticks)
Probing fixed 0 vars, tightened 36 bounds.
Probing time = 0.00 sec. (0.05 ticks)
Tried aggregator 1 time.
MIQP Presolve eliminated 1 rows and 0 columns.
MIQP Presolve modified 34 coefficients.
Reduced MIQP has 532 rows, 598 columns, and 1818 nonzeros.
Reduced MIQP has 48 binaries, 0 generals, 0 SOSs, and 0 indicators.
Reduced MIQP objective Q matrix has 24 nonzeros.
Presolve time = 0.00 sec. (0.59 ticks)
Probing time = 0.00 sec. (0.05 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 16 threads.
Root relaxation solution time = 0.02 sec. (7.22 ticks)

        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer    Best Bound    ItCnt     Gap

      0     0   204253.7116    18                 204253.7116       19         
*     0+    0                       206923.7624   204253.7116             1.29%
      0     0   205911.7001    14   206923.7624      Cuts: 73       87    0.49%
*     0+    0                       206410.6951   205911.7001             0.24%
      0     0   206200.4407    13   206410.6951      Cuts: 48      139    0.10%
      0     0   206239.8844    17   206410.6951      Cuts: 28      169    0.08%
      0     0   206264.4953    17   206410.6951      Cuts: 12      193    0.07%
      0     0   206266.9487    15   206410.6951      Cuts: 12      201    0.07%
*     0+    0                       206353.2894   206266.9487             0.04%
      0     2   206266.9487    15   206353.2894   206296.8327      201    0.03%
Elapsed time = 0.13 sec. (60.75 ticks, tree = 0.01 MB, solutions = 3)
*    15     4      integral     0   206352.9869   206352.8155      330    0.00%
*    17     5      integral     0   206352.8638   206352.8155      332    0.00%
Implied bound cuts applied:  1
Flow cuts applied:  2
Mixed integer rounding cuts applied:  51
Gomory fractional cuts applied:  11

Root node processing (before b&c):
  Real time             =    0.13 sec. (60.02 ticks)
Parallel b&c, 16 threads:
  Real time             =    0.03 sec. (12.95 ticks)
  Sync time (average)   =    0.03 sec.
  Wait time (average)   =    0.00 sec.
                          ------------
Total (root+branch&cut) =    0.16 sec. (72.98 ticks)

3 Matlab代码实现

4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]孙惠娟,刘昀,彭春华,蒙锦辉.计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J].电网技术,2021,45(09):3534-3545.DOI:10.13335/j.1000-3673.pst.2020.1720. 

你可能感兴趣的:(电力系统期刊论文,matlab,综合能源)