Hi,大家好,这里是丹成学长,今天向大家介绍一个单片机项目
基于单片机的智能灌溉系统
大家可用于 课程设计 或 毕业设计
单片机-嵌入式毕设选题大全及项目分享:
https://blog.csdn.net/m0_71572576/article/details/125409052
目的:利用动态水循环,具有下雨探测,日出探测功能,智能灌溉你的作物。
点击Menu按钮显示菜单,并继续点击此按钮循环完成所有菜单选项。如果30秒没有操作这个菜单将会自动返回。按下选择按钮以执行所需的菜单功能。
/* IO Expander sketch optimized
*
* Irrigation System v1.1
*
*/
#include
#include // File located \Program Files (x86)\Arduino\hardware\tools\avr\avr\include\time.h
#include
#include
#include
#include "IOExpander.h"
#define FAHRENHEIT
#define INIT_BOARD "g5w1;g11w1;g11d0,75;g12w1;g12d0,75;rsf"
#define ONEWIRE_TO_I2C_ROM1 "i4scc"
#define ONEWIRE_TO_I2C_ROM2 "i6s8f"
#define ONEWIRE_TEMPERATURE "t6s0300"
#define RTC_SENSOR "s4te"
#define I2C_EEPROM "s4tf"
#define I2C_OLED "s4t10"
#define I2C_LIGHT "s3t9;sc0"
#define OPTICAL_SENSOR "g5a"
#define BUTTON1 "g11d"
#define BUTTON2 "g12d"
#define WATER_TIME_BEFORE_SUNRISE 60
#define SUNRISE_LUX 100
#define RAIN_DETECT_LEVEL 4.0
#define DO_NOT_WATER_TEMP 4.4444 // 40F
#define MAX_ZONES 4
#define HOUR_IN_DAY 24L
#define MIN_IN_HOUR 60L
#define SEC_IN_MIN 60L
#define SEC_IN_HOUR (MIN_IN_HOUR * SEC_IN_MIN)
#define SEC_IN_DAY (HOUR_IN_DAY * SEC_IN_HOUR)
#define DAYS_IN_WEEK 7
#define SEC_IN_WEEK (SEC_IN_DAY * DAYS_IN_WEEK)
#define SUN 0x01
#define MON 0x02
#define TUE 0x04
#define WED 0x08
#define THR 0x10
#define FRI 0x20
#define SAT 0x40
#define EVERYDAY (SUN | MON | TUE | WED | THR | FRI | SAT)
#define SUNRISE 0x80
#define MENU_OPTIONS 9
#define MENU_TIME 30
#define OFF 0
#define ON 1
#define STATE_ON_OFF 0x01
//#define SERIAL_DEBUG
#ifdef SERIAL_DEBUG
SoftwareSerial swSerial(8,7);
#endif
char weekday[][4] = {"SUN","MON","TUE","WED","THU","FRI","SAT"};
char menu[][13] = {"Next",
"Water",
"Reset",
"Clock Min +",
"Clock Min -",
"Clock Hour +",
"Clock Hour -",
"Sunrise",
"ON/OFF"};
enum {
MENU_NEXT,
MENU_WATER,
MENU_RESET,
MENU_CLOCK_MIN_PLUS,
MENU_CLOCK_MIN_MINUS,
MENU_CLOCK_HOUR_PLUS,
MENU_CLOCK_HOUR_MINUS,
MENU_SUNRISE,
MENU_ON_OFF
};
typedef struct {
char description[16];
uint8_t relay;
} ZONE;
typedef struct {
uint8_t zone;
uint8_t days;
int8_t hour;
int8_t min;
uint8_t duration;
} SCHEDULE;
typedef struct {
time_t sunrise_time;
time_t last_water_time;
uint8_t water_schedule;
uint8_t water_duration;
uint8_t rain[MAX_ZONES];
uint8_t state;
uint8_t crc;
} NVRAM;
enum {
ZONE1,
ZONE2,
ZONE3,
ZONE4
};
enum {
RELAY1 = 1,
RELAY2,
RELAY3,
RELAY4
};
ZONE zone[] = {
{"Front Right", RELAY1},
{"Front Left", RELAY2},
{"Bushes", RELAY3},
{"Left Side", RELAY4},
};
SCHEDULE schedule[] = {
{ZONE1, SUNRISE | EVERYDAY, -1, 0, 4},
{ZONE2, EVERYDAY, 6, 15, 5},
{ZONE3, EVERYDAY, 6, 0, 10},
{ZONE4, EVERYDAY, 6, 10, 6},
};
NVRAM nvram;
bool update_nvram = false;
uint8_t crc8(uint8_t* data, uint16_t length)
{
uint8_t crc = 0;
while (length--) {
crc = _crc8_ccitt_update(crc, *data++);
}
return crc;
}
int led = 13;
bool init_oled = true;
bool update_oled = true;
bool init_board = true;
#ifdef FAHRENHEIT
#define C2F(temp) CelsiusToFahrenheit(temp)
float CelsiusToFahrenheit(float celsius)
{
return ((celsius * 9) / 5) + 32;
}
#else
#define C2F(temp) (temp)
#endif
void SerialPrint(const char* str, float decimal, char error)
{
Serial.print(str);
if (error) Serial.print(F("NA"));
else Serial.print(decimal, 1);
}
time_t NextScheduleTime(time_t last_time, uint8_t* next_schedule)
{
time_t next_time = -1;
time_t clk_time;
uint8_t i;
tm clk;
uint8_t wday;
for (i = 0; i < sizeof(schedule) / sizeof(SCHEDULE); i++) {
if (schedule[i].days & SUNRISE) {
clk_time = nvram.sunrise_time;
clk_time += schedule[i].hour * SEC_IN_HOUR;
clk_time += schedule[i].min * SEC_IN_MIN;
localtime_r(&clk_time, &clk);
}
else {
localtime_r(&last_time, &clk);
clk.tm_hour = schedule[i].hour;
clk.tm_min = schedule[i].min;
clk.tm_sec = 0;
clk_time = mktime(&clk);
}
wday = clk.tm_wday;
while (clk_time <= last_time || !(schedule[i].days & (1 << wday)))
{
clk_time += SEC_IN_DAY;
if (++wday > SATURDAY) wday = SUNDAY;
if (wday == clk.tm_wday) break; // Only check one week
}
if (clk_time < next_time) {
next_time = clk_time;
*next_schedule = i;
}
}
return next_time;
}
void StartScheduleTime(time_t start_time, uint8_t start_schedule)
{
uint8_t i;
nvram.last_water_time = start_time;
nvram.water_schedule = start_schedule;
nvram.water_duration = schedule[start_schedule].duration+1;
update_nvram = true;
// Check if it rained
i = schedule[start_schedule].zone;
if (i < MAX_ZONES && nvram.rain[i] > 0) {
if (nvram.rain[i] > nvram.water_duration) nvram.water_duration = 0;
else nvram.water_duration -= nvram.rain[i];
nvram.rain[i] = 0;
}
}
void WaterScheduleTime(void)
{
uint8_t i;
nvram.water_duration--;
update_nvram = true;
i = schedule[nvram.water_schedule].zone;
if (i < MAX_ZONES) {
Serial.print("r");
Serial.print(zone[i].relay);
if (nvram.water_duration > 0) Serial.println("o");
else Serial.println("f");
SerialReadUntilDone();
}
}
void setup() {
Serial.begin(115200);
#ifdef SERIAL_DEBUG
swSerial.begin(115200);
#endif
pinMode(led, OUTPUT);
//delay(1000);
wdt_enable(WDTO_8S);
}
void loop() {
static tm rtc;
tm clk, sunrise_clk;
time_t rtc_time;
time_t clk_time;
static time_t next_time;
static uint8_t last_sec;
static uint8_t last_min;
bool error_rtc;
bool error_light;
bool error_temp;
static long lux = 0;
static float temp, rain;
static uint8_t sunrise_counter = MIN_IN_HOUR;
static bool check_sunrise = false;
uint8_t i;
static bool read_nvram = true;
static time_t water_time;
static uint8_t water_schedule;
uint8_t sz;
uint8_t wday;
long n;
bool button1, button2;
static int8_t menu_select = -1;
static time_t menu_time = 0;
Serial.println();
if (SerialReadUntilDone()) {
if (init_board) {
SerialCmdDone(INIT_BOARD);
init_board = false;
}
if (init_oled) {
if (SerialCmdNoError(ONEWIRE_TO_I2C_ROM1)) {
SerialCmdDone(I2C_OLED ";si;sc;sd");
init_oled = false;
}
}
if (SerialCmdDone(RTC_SENSOR)) {
error_rtc = !SerialReadTime(&rtc);
if (!error_rtc) {
clk = rtc; // mktime() can change struct tm
rtc_time = mktime(&clk);
localtime_r(&rtc_time, &rtc); // Get wday.
}
if (read_nvram) {
if (SerialCmdNoError(I2C_EEPROM)) {
SerialReadEEPROM((uint8_t*)&nvram, 0, sizeof(nvram));
if (nvram.crc != crc8((uint8_t*)&nvram, sizeof(nvram)-sizeof(uint8_t))) {
//swSerial.println("CRC8 Failure!");
// Initialize nvram
memset(&nvram, 0, sizeof(nvram));
clk = rtc;
clk.tm_hour = 6;
clk.tm_min = 0;
clk.tm_sec = 0;
nvram.sunrise_time = mktime(&clk);
if (nvram.sunrise_time < rtc_time) nvram.sunrise_time + SEC_IN_DAY;
update_nvram = true;
}
// Check last water time no less than one week
if (rtc_time - nvram.last_water_time > SEC_IN_WEEK) nvram.last_water_time = rtc_time - SEC_IN_WEEK;
// Check sunrise time
if (rtc_time > nvram.sunrise_time) {
localtime_r(&nvram.sunrise_time, &sunrise_clk);
clk = rtc;
clk.tm_hour = sunrise_clk.tm_hour;
clk.tm_min = sunrise_clk.tm_min;
clk.tm_sec = sunrise_clk.tm_sec;
nvram.sunrise_time = mktime(&clk);
if (nvram.sunrise_time < rtc_time) nvram.sunrise_time + SEC_IN_DAY;
}
if (nvram.water_duration) {
nvram.water_duration++;
water_time = nvram.last_water_time;
}
else {
clk_time = (nvram.last_water_time) ? nvram.last_water_time : rtc_time;
water_time = NextScheduleTime(clk_time, &water_schedule);
}
read_nvram = false;
}
}
}
// Process only once every minute
if (rtc.tm_min != last_min)
{
// Request a 1-Wire temperature measurement. Read it later.
error_temp = !SerialCmdNoError(ONEWIRE_TEMPERATURE);
if (!error_temp) SerialCmdDone("tt");
error_light = !SerialCmdNoError(ONEWIRE_TO_I2C_ROM2 ";oo0");
if (!error_light) {
SerialCmdDone(I2C_LIGHT); // Do not use overdrive
SerialCmd("sr");
SerialReadInt(&lux);
SerialReadUntilDone();
}
if (SerialCmd(OPTICAL_SENSOR)) {
SerialReadFloat(&rain);
SerialReadUntilDone();
}
error_temp = !SerialCmdNoError(ONEWIRE_TEMPERATURE);
if (!error_temp) {
SerialCmd("tr");
SerialReadFloat(&temp);
SerialReadUntilDone();
}
// Is it sunrise?
if (lux < SUNRISE_LUX) {
if (sunrise_counter > 0) sunrise_counter--;
else check_sunrise = true;
}
else {
if (sunrise_counter < MIN_IN_HOUR) {
sunrise_counter++;
if (check_sunrise && sunrise_counter == MIN_IN_HOUR) {
nvram.sunrise_time = rtc_time + (SEC_IN_DAY - SEC_IN_HOUR);
check_sunrise = false;
update_nvram = true;
}
}
}
// Is it raining?
if (rain <= RAIN_DETECT_LEVEL) {
for (i = 0; i < MAX_ZONES; i++) {
if (nvram.rain[i] < -1) nvram.rain[i]++;
}
update_nvram = true;
}
// Check schedule
if (menu_select == -1 && !nvram.water_duration) {
while (water_time + (schedule[water_schedule].duration * SEC_IN_MIN) < rtc_time) {
water_time = NextScheduleTime(water_time, &water_schedule);
}
if (water_time <= rtc_time) {
StartScheduleTime(water_time, water_schedule);
if (temp <= DO_NOT_WATER_TEMP || nvram.state & STATE_ON_OFF == OFF)
nvram.water_duration = 0;
}
}
// Do we need to water?
if (nvram.water_duration) {
WaterScheduleTime();
if (!nvram.water_duration)
water_time = NextScheduleTime(water_time, &water_schedule);
}
last_min = rtc.tm_min;
update_oled = true;
}
// Check buttons
button1 = SerialReadButton(BUTTON1);
if (button1) {
if (menu_select == -1) menu_select = 0;
else {
if (++menu_select >= MENU_OPTIONS)
menu_select = 0;
}
menu_time = rtc_time;
update_oled = true;
}
if (menu_select >= 0) {
button2 = SerialReadButton(BUTTON2);
if (button2) {
clk_time = rtc_time;
switch(menu_select) {
case MENU_NEXT:
case MENU_RESET:
if (nvram.water_duration) {
nvram.water_duration = 1;
WaterScheduleTime();
}
water_time = NextScheduleTime((menu_select == MENU_NEXT) ? water_time : rtc_time, &water_schedule);
break;
case MENU_WATER:
StartScheduleTime(water_time, water_schedule);
WaterScheduleTime();
break;
case MENU_CLOCK_MIN_PLUS:
clk_time += SEC_IN_MIN;
break;
case MENU_CLOCK_MIN_MINUS:
clk_time -= SEC_IN_MIN;
break;
case MENU_CLOCK_HOUR_PLUS:
clk_time += SEC_IN_HOUR;
break;
case MENU_CLOCK_HOUR_MINUS:
clk_time -= SEC_IN_HOUR;
break;
case MENU_ON_OFF:
nvram.state ^= STATE_ON_OFF;
update_nvram = true;
break;
}
if (clk_time != rtc_time) {
if (SerialCmdDone(RTC_SENSOR)) {
localtime_r(&clk_time, &clk);
SerialWriteTime(&clk);
rtc_time = clk_time;
}
}
menu_time = rtc_time;
update_oled = true;
}
}
if (menu_select >= 0 && rtc_time - menu_time > MENU_TIME) {
menu_select = -1;
update_oled = true;
}
if (update_oled) {
if (SerialCmdNoError(ONEWIRE_TO_I2C_ROM1)) {
Serial.print("st10;so1;sc;sf0;sa0;sd0,0,\"");
if (nvram.water_duration) Serial.print(nvram.water_duration);
else {
if ((nvram.state & STATE_ON_OFF) == OFF) Serial.print("OFF");
else if (rain <= RAIN_DETECT_LEVEL) Serial.print("Rain");
else if (temp <= DO_NOT_WATER_TEMP) Serial.print("Cold");
else Serial.print("v1.1");
}
Serial.print("\";sf2;sa1;sd75,0,\"");
if (menu_select == 7) { // Sunrise
clk_time = nvram.sunrise_time;
localtime_r(&clk_time, &clk);
}
else clk = rtc;
Serial.print(clk.tm_hour-((clk.tm_hour>12)?12:0));
Serial.print(":");
if (clk.tm_min < 10) Serial.print("0");
Serial.print(clk.tm_min);
Serial.println("\"");
SerialReadUntilDone();
Serial.print("sf1;sa0;sd79,8,\"");
Serial.print((clk.tm_hour>12)?"PM":"AM");
Serial.print("\";sf0;sa1;sd127,1,\"");
Serial.print(weekday[clk.tm_wday]);
Serial.print("\";sd127,13,\"");
Serial.print(clk.tm_mon+1);
Serial.print("/");
Serial.print(clk.tm_mday);
Serial.println("\"");
SerialReadUntilDone();
Serial.print("sf0;sa0;sd1,36,\"");
i = schedule[water_schedule].zone;
if (i < MAX_ZONES) Serial.print(zone[i].description);
localtime_r(&water_time, &clk);
if (water_time - rtc_time > SEC_IN_DAY) {
Serial.print("\";sa1;sd126,36,\"");
Serial.print(clk.tm_mon+1);
Serial.print("/");
Serial.print(clk.tm_mday);
Serial.print(" ");
Serial.print(clk.tm_hour-((clk.tm_hour>12)?12:0));
Serial.print(":");
if (clk.tm_min < 10) Serial.print("0");
Serial.print(clk.tm_min);
Serial.print(" ");
}
else {
Serial.print("\";sf1;sa1;sd111,30,\"");
Serial.print(clk.tm_hour-((clk.tm_hour>12)?12:0));
Serial.print(":");
if (clk.tm_min < 10) Serial.print("0");
Serial.print(clk.tm_min);
Serial.print("\";sf0;sd126,36,\"");
}
Serial.print((clk.tm_hour>12)?"PM":"AM");
if (nvram.water_duration) Serial.print("\";so2;sc0,29,128,19");
Serial.println();
SerialReadUntilDone();
if (menu_select == -1) {
//Serial.print("\";sa0;sd0,52,\"");
//Serial.print(rain);
SerialPrint("\";so1;sa2;sd63,52,\"", C2F(temp), error_temp);
if (!error_temp) Serial.print("\",248,\""
#ifdef FAHRENHEIT
"F"
#else
"C"
#endif
);
Serial.print(" / ");
Serial.print(lux);
}
else {
Serial.print("\";so0;sc0,51,128,14;sf0;sa2;sd63,52,\"");
if (menu_select == MENU_ON_OFF) {
Serial.print((nvram.state & STATE_ON_OFF) ? "OFF" : "ON");
}
else Serial.print(menu[menu_select]);
}
Serial.println("\";sd");
SerialReadUntilDone();
update_oled = false;
}
else init_oled = true;
}
if (update_nvram) {
if (SerialCmdNoError(I2C_EEPROM)) {
nvram.crc = crc8((uint8_t*)&nvram, sizeof(nvram)-sizeof(uint8_t));
//swSerial.println(nvram.crc, HEX);
SerialWriteEEPROM((uint8_t*)&nvram, 0, sizeof(nvram));
update_nvram = false;
}
}
delay(50);
}
else {
digitalWrite(led, HIGH);
delay(500);
digitalWrite(led, LOW);
delay(500);
init_board = true;
init_oled = true;
}
wdt_reset();
}
单片机-嵌入式毕设选题大全及项目分享:
https://blog.csdn.net/m0_71572576/article/details/125409052