本文整理匯總了Python中torch.nn.BatchNorm2d方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.BatchNorm2d方法的具體用法?Python nn.BatchNorm2d怎麽用?Python nn.BatchNorm2d使用的例子?那麽恭喜您, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在模塊torch.nn的用法示例。
在下文中一共展示了nn.BatchNorm2d方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於我們的係統推薦出更棒的Python代碼示例。
示例1: __init__
點讚 7
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'):
super(ImageDecoder, self).__init__()
ngf = ngf * (2 ** (n_layers - 2))
layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True)]
for i in range(1, n_layers - 1):
layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf // 2),
nn.ReLU(True)]
ngf = ngf // 2
layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)]
if activation == 'tanh':
layers += [nn.Tanh()]
elif activation == 'sigmoid':
layers += [nn.Sigmoid()]
else:
raise NotImplementedError
self.main = nn.Sequential(*layers)
開發者ID:jthsieh,項目名稱:DDPAE-video-prediction,代碼行數:25,
示例2: __init__
點讚 7
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self):
super(GoogLeNet, self).__init__()
self.pre_layers = nn.Sequential(
nn.Conv2d(3, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192),
nn.ReLU(True),
)
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)
self.avgpool = nn.AvgPool2d(8, stride=1)
self.linear = nn.Linear(1024, 10)
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:26,
示例3: __init__
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.conv4 = nn.Conv2d(64, 128, 3, padding=1)
self.bn4 = nn.BatchNorm2d(128)
self.conv5 = nn.Conv2d(128, 128, 3, dilation=2, padding=2)
self.bn5 = nn.BatchNorm2d(128)
self.conv6 = nn.Conv2d(128, 128, 3, dilation=4, padding=4)
self.bn6 = nn.BatchNorm2d(128)
self.conv7 = nn.Conv2d(128, 1+9, 3, padding=1)
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:23,
示例4: _make_layer
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, 1, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
# here with dilation
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:19,
示例5: __init__
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# maxpool different from pytorch-resnet, to match tf-faster-rcnn
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
# use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:24,
示例6: _make_layer
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:18,
示例7: init_weights
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def init_weights(self, pretrained=None):
"""Initialize the weights in the module.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:20,
示例8: fuse_module
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def fuse_module(m):
last_conv = None
last_conv_name = None
for name, child in m.named_children():
if isinstance(child, (nn.BatchNorm2d, nn.SyncBatchNorm)):
if last_conv is None: # only fuse BN that is after Conv
continue
fused_conv = fuse_conv_bn(last_conv, child)
m._modules[last_conv_name] = fused_conv
# To reduce changes, set BN as Identity instead of deleting it.
m._modules[name] = nn.Identity()
last_conv = None
elif isinstance(child, nn.Conv2d):
last_conv = child
last_conv_name = name
else:
fuse_module(child)
return m
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:21,
示例9: __init__
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self):
super(CW2_Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3)
self.bnm1 = nn.BatchNorm2d(32, momentum=0.1)
self.conv2 = nn.Conv2d(32, 64, 3)
self.bnm2 = nn.BatchNorm2d(64, momentum=0.1)
self.conv3 = nn.Conv2d(64, 128, 3)
self.bnm3 = nn.BatchNorm2d(128, momentum=0.1)
self.conv4 = nn.Conv2d(128, 128, 3)
self.bnm4 = nn.BatchNorm2d(128, momentum=0.1)
self.fc1 = nn.Linear(3200, 256)
#self.dropout1 = nn.Dropout(p=0.35, inplace=False)
self.bnm5 = nn.BatchNorm1d(256, momentum=0.1)
self.fc2 = nn.Linear(256, 256)
self.bnm6 = nn.BatchNorm1d(256, momentum=0.1)
self.fc3 = nn.Linear(256, 10)
#self.dropout2 = nn.Dropout(p=0.35, inplace=False)
#self.dropout3 = nn.Dropout(p=0.35, inplace=False)
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,
示例10: __init__
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
super(Block, self).__init__()
group_width = cardinality * bottleneck_width
self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(group_width)
self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
self.bn2 = nn.BatchNorm2d(group_width)
self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*group_width)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*group_width:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*group_width)
)
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:18,
示例11: __init__
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
super(Bottleneck, self).__init__()
self.out_planes = out_planes
self.dense_depth = dense_depth
self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
self.bn2 = nn.BatchNorm2d(in_planes)
self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)
self.shortcut = nn.Sequential()
if first_layer:
self.shortcut = nn.Sequential(
nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_planes+dense_depth)
)
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,
示例12: __init__
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes)
)
# SE layers
self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) # Use nn.Conv2d instead of nn.Linear
self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,
示例13: _make_layers
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size())
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,
示例14: __init__
點讚 6
# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import BatchNorm2d [as 別名]
def __init__(self, in_planes, out_planes, stride, groups):
super(Bottleneck, self).__init__()
self.stride = stride
mid_planes = out_planes/4
g = 1 if in_planes==24 else groups
self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
self.bn1 = nn.BatchNorm2d(mid_planes)
self.shuffle1 = ShuffleBlock(groups=g)
self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
self.bn2 = nn.BatchNorm2d(mid_planes)
self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes)
self.shortcut = nn.Sequential()
if stride == 2:
self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1))
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,
注:本文中的torch.nn.BatchNorm2d方法示例整理自Github/MSDocs等源碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。