视觉SLAM十四讲CH9代码解析及课后习题详解

关于书中的卡尔曼滤波感觉特别难,看不懂到底在说些什么,只知道在SLAM中用的比较多,具体讲的通俗点的可以看下面的博客,但是感觉还是很难懂。

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

一:点云查看工具安装:

CloudCompare安装:

方法1:

命令行安装:

sudo snap install cloudcompare

安装完成后,可以将 ccViewer和CloudCompare添加到任务栏里,也可以使用下面的命令行打开:

打开ccViewer:

cloudcompare.ccViewer

打开CloudCompare:

cloudcompare.CloudCompare

方法2:

在软件中心中进行安装:

视觉SLAM十四讲CH9代码解析及课后习题详解_第1张图片

MeshLab安装:

方法1:

命令行安装

sudo add-apt-repository ppa:zarquon42/meshlab

然后按Enter键,继续

sudo apt-get install meshlab

视觉SLAM十四讲CH9代码解析及课后习题详解_第2张图片

 方法2:

软件中心安装

视觉SLAM十四讲CH9代码解析及课后习题详解_第3张图片

bundle_adjustment_ceres.cpp

#include 
#include 
#include "common.h"//使用common.h中定义的BALProblem类读入该文件的内容
#include "SnavelyReprojectionError.h"

using namespace std;

void SolveBA(BALProblem &bal_problem);//定义SolveBA函数

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "usage: bundle_adjustment_ceres bal_data.txt" << endl;//输出使用方法
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();//归一化 将所有路标点的中心置零,然后做一个合适尺度的缩放
    bal_problem.Perturb(0.1, 0.5, 0.5);//通过Perturb函数给数据加入噪声
    bal_problem.WriteToPLYFile("initial.ply");//存储最初点云
    SolveBA(bal_problem);//BA求解
    bal_problem.WriteToPLYFile("final.ply");//存储最终点云

    return 0;
}

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // Observations is 2 * num_observations long array observations 
    // [u_1, u_2, ... u_n], where each u_i is two dimensional, the x
    // and y position of the observation.
    const double *observations = bal_problem.observations();
    ceres::Problem problem;

    for (int i = 0; i < bal_problem.num_observations(); ++i) 
    {
        ceres::CostFunction *cost_function;

        // Each Residual block takes a point and a camera as input
        // and outputs a 2 dimensional Residual
        cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]);//调用SnavelyReprojectionError.h c文件

        // If enabled use Huber's loss function.
        ceres::LossFunction *loss_function = new ceres::HuberLoss(1.0);

        // Each observation corresponds to a pair of a camera and a point
        // which are identified by camera_index()[i] and point_index()[i]
        // respectively.
        double *camera = cameras + camera_block_size * bal_problem.camera_index()[i];
        //camera_block_size = bal_problem.camera_block_size();
        //*camera = cameras + bal_problem.camera_block_size() * bal_problem.camera_index()[i]
        double *point = points + point_block_size * bal_problem.point_index()[i];
        //point_block_size = bal_problem.point_block_size();
        //*point = points + bal_problem.point_block_size() * bal_problem.point_index()[i]
        problem.AddResidualBlock(cost_function, loss_function, camera, point); // 向问题中添加误差项
        //CostFunction* : 描述最小二乘的基本形式即代价函数
        //LossFunction* : 描述核函数的形式
    }

    // show some information here ...
    std::cout << "bal problem file loaded..." << std::endl;//输出bal problem file loaded...
    std::cout << "bal problem have " << bal_problem.num_cameras() << " cameras and "
              << bal_problem.num_points() << " points. " << std::endl;//bal_problem.num_cameras()表示相机位姿个数
              //bal_problem.num_points()表示路标点数
    std::cout << "Forming " << bal_problem.num_observations() << " observations. " << std::endl;// bal_problem.num_observations()表示观测点数

    std::cout << "Solving ceres BA ... " << endl;//BA求解
    ceres::Solver::Options options; // 这里有很多配置项可以填Options类嵌入在Solver类中 ,在Options类中可以设置关于求解器的参数
    options.linear_solver_type = ceres::LinearSolverType::SPARSE_SCHUR; 
    // 增量方程如何求解 这里的linear_solver_type 是一个Linear_solver_type的枚举类型的变量
    //使用Schur消元
    options.minimizer_progress_to_stdout = true;
    ceres::Solver::Summary summary;// 优化信息
    ceres::Solve(options, &problem, &summary);
    std::cout << summary.FullReport() << "\n";
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

project(bundle_adjustment)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3 -std=c++14")

LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

Find_Package(G2O REQUIRED)
Find_Package(Eigen3 REQUIRED)
Find_Package(Ceres REQUIRED)
Find_Package(Sophus REQUIRED)
Find_Package(CSparse REQUIRED)

SET(G2O_LIBS g2o_csparse_extension g2o_stuff g2o_core cxsparse)

include_directories(${PROJECT_SOURCE_DIR} ${EIGEN3_INCLUDE_DIR} ${CSPARSE_INCLUDE_DIR})

add_library(bal_common common.cpp)
add_executable(bundle_adjustment_g2o bundle_adjustment_g2o.cpp)
add_executable(bundle_adjustment_ceres bundle_adjustment_ceres.cpp)

target_link_libraries(bundle_adjustment_ceres ${CERES_LIBRARIES} bal_common)
target_link_libraries(bundle_adjustment_g2o ${G2O_LIBS} bal_common)

执行效果:

./bundle_adjustment_ceres ../problem-16-22106-pre.txt 
Header: 16 22106 83718bal problem file loaded...
bal problem have 16 cameras and 22106 points. 
Forming 83718 observations. 
Solving ceres BA ... 
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.842900e+07    0.00e+00    2.04e+06   0.00e+00   0.00e+00  1.00e+04        0    5.78e-02    1.91e-01
   1  1.449093e+06    1.70e+07    1.75e+06   2.16e+03   1.84e+00  3.00e+04        1    1.39e-01    3.30e-01
   2  5.848543e+04    1.39e+06    1.30e+06   1.55e+03   1.87e+00  9.00e+04        1    1.39e-01    4.69e-01
   3  1.581483e+04    4.27e+04    4.98e+05   4.98e+02   1.29e+00  2.70e+05        1    1.37e-01    6.07e-01
   4  1.251823e+04    3.30e+03    4.64e+04   9.96e+01   1.11e+00  8.10e+05        1    1.29e-01    7.35e-01
   5  1.240936e+04    1.09e+02    9.78e+03   1.33e+01   1.42e+00  2.43e+06        1    1.34e-01    8.70e-01
   6  1.237699e+04    3.24e+01    3.91e+03   5.04e+00   1.70e+00  7.29e+06        1    1.35e-01    1.00e+00
   7  1.236187e+04    1.51e+01    1.96e+03   3.40e+00   1.75e+00  2.19e+07        1    1.36e-01    1.14e+00
   8  1.235405e+04    7.82e+00    1.03e+03   2.40e+00   1.76e+00  6.56e+07        1    1.40e-01    1.28e+00
   9  1.234934e+04    4.71e+00    5.04e+02   1.67e+00   1.87e+00  1.97e+08        1    1.34e-01    1.41e+00
  10  1.234610e+04    3.24e+00    4.31e+02   1.15e+00   1.88e+00  5.90e+08        1    1.34e-01    1.55e+00
  11  1.234386e+04    2.24e+00    3.27e+02   8.44e-01   1.90e+00  1.77e+09        1    1.34e-01    1.68e+00
  12  1.234232e+04    1.54e+00    3.44e+02   6.69e-01   1.82e+00  5.31e+09        1    1.35e-01    1.82e+00
  13  1.234126e+04    1.07e+00    2.21e+02   5.45e-01   1.91e+00  1.59e+10        1    1.39e-01    1.96e+00
  14  1.234047e+04    7.90e-01    1.12e+02   4.84e-01   1.87e+00  4.78e+10        1    1.35e-01    2.09e+00
  15  1.233986e+04    6.07e-01    1.02e+02   4.22e-01   1.95e+00  1.43e+11        1    1.39e-01    2.23e+00
  16  1.233934e+04    5.22e-01    1.03e+02   3.82e-01   1.97e+00  4.30e+11        1    1.33e-01    2.36e+00
  17  1.233891e+04    4.25e-01    1.07e+02   3.46e-01   1.93e+00  1.29e+12        1    1.41e-01    2.50e+00
  18  1.233855e+04    3.59e-01    1.04e+02   3.15e-01   1.96e+00  3.87e+12        1    1.34e-01    2.64e+00
  19  1.233825e+04    3.06e-01    9.27e+01   2.88e-01   1.98e+00  1.16e+13        1    1.41e-01    2.78e+00
  20  1.233799e+04    2.61e-01    1.17e+02   2.16e-01   1.97e+00  3.49e+13        1    1.34e-01    2.91e+00
  21  1.233777e+04    2.18e-01    1.22e+02   1.16e-01   1.97e+00  1.05e+14        1    1.38e-01    3.05e+00
  22  1.233760e+04    1.73e-01    1.10e+02   9.34e-02   1.89e+00  3.14e+14        1    1.40e-01    3.19e+00
  23  1.233746e+04    1.37e-01    1.14e+02   9.06e-02   1.98e+00  9.41e+14        1    1.39e-01    3.33e+00
  24  1.233735e+04    1.13e-01    1.18e+02   2.73e-01   1.96e+00  2.82e+15        1    1.40e-01    3.47e+00
WARNING: Logging before InitGoogleLogging() is written to STDERR
W1121 21:50:53.870322 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  25  1.233735e+04    0.00e+00    1.18e+02   0.00e+00   0.00e+00  1.41e+15        1    3.90e-02    3.51e+00
  26  1.233725e+04    9.50e-02    1.19e+02   8.90e-01   1.99e+00  4.24e+15        1    1.49e-01    3.66e+00
W1121 21:50:54.052893 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  27  1.233725e+04    0.00e+00    1.19e+02   0.00e+00   0.00e+00  2.12e+15        1    3.33e-02    3.69e+00
  28  1.233718e+04    6.92e-02    5.72e+01   2.56e-01   1.70e+00  6.35e+15        1    1.88e-01    3.88e+00
W1121 21:50:54.284538 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  29  1.233718e+04    0.00e+00    5.72e+01   0.00e+00   0.00e+00  3.18e+15        1    4.32e-02    3.92e+00
  30  1.233714e+04    3.65e-02    5.84e+01   4.08e-01   1.93e+00  9.53e+15        1    1.87e-01    4.11e+00
W1121 21:50:54.513195 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  31  1.233714e+04    0.00e+00    5.84e+01   0.00e+00   0.00e+00  4.77e+15        1    4.12e-02    4.15e+00
W1121 21:50:54.602217 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  32  1.233714e+04    0.00e+00    5.84e+01   0.00e+00   0.00e+00  1.19e+15        1    8.90e-02    4.24e+00
  33  1.233711e+04    3.32e-02    5.96e+01   3.54e-01   2.00e+00  3.57e+15        1    1.50e-01    4.39e+00
W1121 21:50:54.786926 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  34  1.233711e+04    0.00e+00    5.96e+01   0.00e+00   0.00e+00  1.79e+15        1    3.42e-02    4.43e+00
W1121 21:50:54.824539 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  35  1.233711e+04    0.00e+00    5.96e+01   0.00e+00   0.00e+00  4.47e+14        1    3.76e-02    4.46e+00
  36  1.233708e+04    3.14e-02    6.13e+01   1.04e-01   2.00e+00  1.34e+15        1    1.88e-01    4.65e+00
  37  1.233705e+04    2.50e-02    2.04e+01   6.12e-01   1.68e+00  4.02e+15        1    1.30e-01    4.78e+00
W1121 21:50:55.174543 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  38  1.233705e+04    0.00e+00    2.04e+01   0.00e+00   0.00e+00  2.01e+15        1    3.28e-02    4.81e+00
  39  1.233704e+04    1.58e-02    2.04e+01   6.17e-01   1.95e+00  6.03e+15        1    1.49e-01    4.96e+00
W1121 21:50:55.361660 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  40  1.233704e+04    0.00e+00    2.04e+01   0.00e+00   0.00e+00  3.02e+15        1    3.83e-02    5.00e+00
W1121 21:50:55.442020 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  41  1.233704e+04    0.00e+00    2.04e+01   0.00e+00   0.00e+00  7.54e+14        1    8.03e-02    5.08e+00
  42  1.233702e+04    1.51e-02    2.06e+01   1.14e-01   2.00e+00  2.26e+15        1    1.87e-01    5.27e+00
W1121 21:50:55.667086 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  43  1.233702e+04    0.00e+00    2.06e+01   0.00e+00   0.00e+00  1.13e+15        1    3.75e-02    5.31e+00
  44  1.233701e+04    1.48e-02    2.06e+01   3.49e-01   1.99e+00  3.39e+15        1    1.49e-01    5.46e+00
W1121 21:50:55.853902 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  45  1.233701e+04    0.00e+00    2.06e+01   0.00e+00   0.00e+00  1.70e+15        1    3.80e-02    5.49e+00
  46  1.233700e+04    1.42e-02    2.09e+01   5.48e-01   1.99e+00  5.09e+15        1    1.49e-01    5.64e+00
W1121 21:50:56.041224 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  47  1.233700e+04    0.00e+00    2.09e+01   0.00e+00   0.00e+00  2.54e+15        1    3.82e-02    5.68e+00
  48  1.233698e+04    1.39e-02    2.17e+01   6.10e-01   2.00e+00  7.63e+15        1    1.49e-01    5.83e+00
W1121 21:50:56.229017 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  49  1.233698e+04    0.00e+00    2.17e+01   0.00e+00   0.00e+00  3.82e+15        1    3.84e-02    5.87e+00
W1121 21:50:56.281327 16417 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  50  1.233698e+04    0.00e+00    2.17e+01   0.00e+00   0.00e+00  9.54e+14        1    5.23e-02    5.92e+00

Solver Summary (v 2.0.0-eigen-(3.4.0)-lapack-suitesparse-(5.7.1)-cxsparse-(3.2.0)-eigensparse-no_openmp)

                                     Original                  Reduced
Parameter blocks                        22122                    22122
Parameters                              66462                    66462
Residual blocks                         83718                    83718
Residuals                              167436                   167436

Minimizer                        TRUST_REGION

Sparse linear algebra library    SUITE_SPARSE
Trust region strategy     LEVENBERG_MARQUARDT

                                        Given                     Used
Linear solver                    SPARSE_SCHUR             SPARSE_SCHUR
Threads                                     1                        1
Linear solver ordering              AUTOMATIC                 22106,16
Schur structure                         2,3,9                    2,3,9

Cost:
Initial                          1.842900e+07
Final                            1.233698e+04
Change                           1.841667e+07

Minimizer iterations                       51
Successful steps                           36
Unsuccessful steps                         15

Time (in seconds):
Preprocessor                         0.133346

  Residual only evaluation           0.541025 (35)
  Jacobian & residual evaluation     2.551966 (36)
  Linear solver                      2.374793 (50)
Minimizer                            5.789036

Postprocessor                        0.005307
Total                                5.927690

Termination:                   NO_CONVERGENCE (Maximum number of iterations reached. Number of iterations: 50.)

 用MeshLab查看的结果如下:

initial.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第4张图片

final.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第5张图片
用CloudCompare查看的结果如下:

initial.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第6张图片

final.ply

 视觉SLAM十四讲CH9代码解析及课后习题详解_第7张图片

bundle_adjustment_g2o.cpp

#include //g2o顶点(Vertex)头文件 视觉slam十四讲p141用顶点表示优化变量,用边表示误差项
#include //g2o边(edge)头文件
#include //求解器头文件
#include //列文伯格——马尔夸特算法头文件
#include 
#include //鲁棒核函数
#include 

#include "common.h"//使用common.h中定义的BALProblem类读入该文件的内容
#include "sophus/se3.hpp"

using namespace Sophus;
using namespace Eigen;
using namespace std;

/// 姿态和内参的结构
struct PoseAndIntrinsics {
    PoseAndIntrinsics() {}

    /// set from given data address
    explicit PoseAndIntrinsics(double *data_addr) 
    {
        //每个相机一共有一共有6维的姿态
        rotation = SO3d::exp(Vector3d(data_addr[0], data_addr[1], data_addr[2]));//旋转位姿
        translation = Vector3d(data_addr[3], data_addr[4], data_addr[5]);//转换矩阵
        focal = data_addr[6];//1维焦距
        //2维畸变参数
        k1 = data_addr[7];
        k2 = data_addr[8];
    }

    /// 将估计值放入内存
    void set_to(double *data_addr) 
    {
        auto r = rotation.log();
        for (int i = 0; i < 3; ++i) data_addr[i] = r[i];//旋转位姿
        for (int i = 0; i < 3; ++i) data_addr[i + 3] = translation[i];//转换矩阵
        data_addr[6] = focal;//1维焦距
        data_addr[7] = k1;//2维畸变参数
        data_addr[8] = k2;//2维畸变参数
    }

    SO3d rotation;
    Vector3d translation = Vector3d::Zero();//置0
    double focal = 0;//初始化为0
    double k1 = 0, k2 = 0;//将2维畸变参数初始化为0
};

/// 位姿加相机内参的顶点,9维,前三维为so3,接下去为t, f, k1, k2
class VertexPoseAndIntrinsics : public g2o::BaseVertex<9, PoseAndIntrinsics> {
public://以下定义的成员变量和成员函数都是公有的
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;//解决Eigen库数据结构内存对齐问题

    VertexPoseAndIntrinsics() {}
    
    // 重置
    virtual void setToOriginImpl() override //virtual表示该函数为虚函数,override保留字表示当前函数重写了基类的虚函数
    {
        _estimate = PoseAndIntrinsics();
    }
    // 更新
    virtual void oplusImpl(const double *update) override {
        _estimate.rotation = SO3d::exp(Vector3d(update[0], update[1], update[2])) * _estimate.rotation;
        _estimate.translation += Vector3d(update[3], update[4], update[5]);//更新量累加
        _estimate.focal += update[6];//1维焦距更新量累加
        _estimate.k1 += update[7];//2维畸变参数更新量累加
        _estimate.k2 += update[8];//2维畸变参数更新量累加
    }

    /// 根据估计值投影一个点
    Vector2d project(const Vector3d &point) 
    {
        Vector3d pc = _estimate.rotation * point + _estimate.translation;
        pc = -pc / pc[2];
        double r2 = pc.squaredNorm();
        double distortion = 1.0 + r2 * (_estimate.k1 + _estimate.k2 * r2);
        return Vector2d(_estimate.focal * distortion * pc[0],
                        _estimate.focal * distortion * pc[1]);
    }

  // 存盘和读盘:留空
  virtual bool read(istream &in) {} //istream类是c++标准输入流的一个基类
  //可参照C++ Primer Plus第六版的6.8节
  virtual bool write(ostream &out) const {} //ostream类是c++标准输出流的一个基类
  //可参照C++ Primer Plus第六版的6.8节
};

class VertexPoint : public g2o::BaseVertex<3, Vector3d> {
public://以下定义的成员变量和成员函数都是公有的
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;//解决Eigen库数据结构内存对齐问题

    VertexPoint() {}
    // 重置
    virtual void setToOriginImpl() override //virtual表示该函数为虚函数,override保留字表示当前函数重写了基类的虚函数
    {
        _estimate = Vector3d(0, 0, 0);
    }
    // 更新
    virtual void oplusImpl(const double *update) override 
    {
        _estimate += Vector3d(update[0], update[1], update[2]);//更新量累加
    }

   // 存盘和读盘:留空
  virtual bool read(istream &in) {} //istream类是c++标准输入流的一个基类
  //可参照C++ Primer Plus第六版的6.8节
  virtual bool write(ostream &out) const {} //ostream类是c++标准输出流的一个基类
  //可参照C++ Primer Plus第六版的6.8节
};
// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class EdgeProjection :
    public g2o::BaseBinaryEdge<2, Vector2d, VertexPoseAndIntrinsics, VertexPoint> {
public://以下定义的成员变量和成员函数都是公有的
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;//解决Eigen库数据结构内存对齐问题
    
    // 计算误差
    virtual void computeError() override //virtual表示虚函数,保留字override表示当前函数重写了基类的虚函数
    {
        auto v0 = (VertexPoseAndIntrinsics *) _vertices[0];
        auto v1 = (VertexPoint *) _vertices[1];
        auto proj = v0->project(v1->estimate());
        _error = proj - _measurement;
    }

    // use numeric derivatives
    virtual bool read(istream &in) {}//istream类是c++标准输入流的一个基类
    //可参照C++ Primer Plus第六版的6.8节
    virtual bool write(ostream &out) const {}//ostream类是c++标准输出流的一个基类
    //可参照C++ Primer Plus第六版的6.8节

};

void SolveBA(BALProblem &bal_problem);//定义SolveBA函数

int main(int argc, char **argv) {

    if (argc != 2) {
        cout << "usage: bundle_adjustment_g2o bal_data.txt" << endl;//输出使用方法
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();//归一化 将所有路标点的中心置零,然后做一个合适尺度的缩放
    bal_problem.Perturb(0.1, 0.5, 0.5);//通过Perturb函数给数据加入噪声
    bal_problem.WriteToPLYFile("initial.ply");//存储最初点云
    SolveBA(bal_problem);//BA求解
    bal_problem.WriteToPLYFile("final.ply");//存储最终点云

    return 0;
}

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // pose dimension 9, landmark is 3
    typedef g2o::BlockSolver> BlockSolverType;
    typedef g2o::LinearSolverCSparse LinearSolverType;
    // use LM
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique(g2o::make_unique()));
    //c++中的make_unique表示智能指针类型
    g2o::SparseOptimizer optimizer;// 图模型
    optimizer.setAlgorithm(solver);// 设置求解器
    optimizer.setVerbose(true);// 打开调试输出

    /// build g2o problem
    const double *observations = bal_problem.observations();
    // vertex
    vector vertex_pose_intrinsics;
    vector vertex_points;
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        VertexPoseAndIntrinsics *v = new VertexPoseAndIntrinsics();
        double *camera = cameras + camera_block_size * i;
        v->setId(i);
        v->setEstimate(PoseAndIntrinsics(camera));//camera表示优化变量
        optimizer.addVertex(v);// 设置连接的顶点
        vertex_pose_intrinsics.push_back(v);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        VertexPoint *v = new VertexPoint();
        double *point = points + point_block_size * i;
        v->setId(i + bal_problem.num_cameras());
        v->setEstimate(Vector3d(point[0], point[1], point[2]));
        // g2o在BA中需要手动设置待Marg的顶点
        v->setMarginalized(true);
        optimizer.addVertex(v);
        vertex_points.push_back(v);
    }

    // edge
    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        EdgeProjection *edge = new EdgeProjection;
        edge->setVertex(0, vertex_pose_intrinsics[bal_problem.camera_index()[i]]);
        edge->setVertex(1, vertex_points[bal_problem.point_index()[i]]);
        edge->setMeasurement(Vector2d(observations[2 * i + 0], observations[2 * i + 1]));
        edge->setInformation(Matrix2d::Identity());//信息矩阵
        edge->setRobustKernel(new g2o::RobustKernelHuber());//核函数 鲁棒核函数
        optimizer.addEdge(edge);//添加边
    }

    optimizer.initializeOptimization();
    optimizer.optimize(40);//设置迭代次数为40

    // set to bal problem
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        double *camera = cameras + camera_block_size * i;
        //camera_block_size = bal_problem.camera_block_size();
        //*camera = cameras + bal_problem.camera_block_size() * bal_problem.camera_index()[i]
        auto vertex = vertex_pose_intrinsics[i];
        auto estimate = vertex->estimate();
        estimate.set_to(camera);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        double *point = points + point_block_size * i;
        auto vertex = vertex_points[i];
        for (int k = 0; k < 3; ++k) point[k] = vertex->estimate()[k];
    }
}

CMakeLists.txt

和上面一样

执行结果:

./bundle_adjustment_g2o ../problem-16-22106-pre.txt 
Header: 16 22106 83718iteration= 0	 chi2= 8894423.022949	 time= 0.213522 cumTime= 0.213522	 edges= 83718	 schur= 1	 lambda= 227.832660	 levenbergIter= 1
iteration= 1	 chi2= 1772145.050517	 time= 0.187932	 cumTime= 0.401455	 edges= 83718	 schur= 1	 lambda= 75.944220	 levenbergIter= 1
iteration= 2	 chi2= 752585.293391	 time= 0.188038	 cumTime= 0.589493	 edges= 83718	 schur= 1	 lambda= 25.314740	 levenbergIter= 1
iteration= 3	 chi2= 402814.243627	 time= 0.187588	 cumTime= 0.77708	 edges= 83718	 schur= 1	 lambda= 8.438247	 levenbergIter= 1
iteration= 4	 chi2= 284879.378894	 time= 0.188289	 cumTime= 0.96537	 edges= 83718	 schur= 1	 lambda= 2.812749	 levenbergIter= 1
iteration= 5	 chi2= 238356.214415	 time= 0.188404	 cumTime= 1.15377	 edges= 83718	 schur= 1	 lambda= 0.937583	 levenbergIter= 1
iteration= 6	 chi2= 193550.755079	 time= 0.18828	 cumTime= 1.34205	 edges= 83718	 schur= 1	 lambda= 0.312528	 levenbergIter= 1
iteration= 7	 chi2= 146859.909574	 time= 0.188484	 cumTime= 1.53054	 edges= 83718	 schur= 1	 lambda= 0.104176	 levenbergIter= 1
iteration= 8	 chi2= 122887.700218	 time= 0.187905	 cumTime= 1.71844	 edges= 83718	 schur= 1	 lambda= 0.069451	 levenbergIter= 1
iteration= 9	 chi2= 97810.139925	 time= 0.188426	 cumTime= 1.90687	 edges= 83718	 schur= 1	 lambda= 0.046300	 levenbergIter= 1
iteration= 10	 chi2= 80329.940265	 time= 0.18752	 cumTime= 2.09439	 edges= 83718	 schur= 1	 lambda= 0.030867	 levenbergIter= 1
iteration= 11	 chi2= 65663.994405	 time= 0.187678	 cumTime= 2.28207	 edges= 83718	 schur= 1	 lambda= 0.020578	 levenbergIter= 1
iteration= 12	 chi2= 55960.726637	 time= 0.188224	 cumTime= 2.47029	 edges= 83718	 schur= 1	 lambda= 0.013719	 levenbergIter= 1
iteration= 13	 chi2= 53275.547797	 time= 0.187621	 cumTime= 2.65791	 edges= 83718	 schur= 1	 lambda= 0.009146	 levenbergIter= 1
iteration= 14	 chi2= 35983.312124	 time= 0.227208	 cumTime= 2.88512	 edges= 83718	 schur= 1	 lambda= 0.006097	 levenbergIter= 2
iteration= 15	 chi2= 32091.891518	 time= 0.26721	 cumTime= 3.15233	 edges= 83718	 schur= 1	 lambda= 0.016259	 levenbergIter= 3
iteration= 16	 chi2= 31156.262647	 time= 0.227134	 cumTime= 3.37947	 edges= 83718	 schur= 1	 lambda= 0.021679	 levenbergIter= 2
iteration= 17	 chi2= 30773.139623	 time= 0.187135	 cumTime= 3.5666	 edges= 83718	 schur= 1	 lambda= 0.014453	 levenbergIter= 1
iteration= 18	 chi2= 29079.563460	 time= 0.228139	 cumTime= 3.79474	 edges= 83718	 schur= 1	 lambda= 0.012488	 levenbergIter= 2
iteration= 19	 chi2= 28484.154313	 time= 0.227314	 cumTime= 4.02205	 edges= 83718	 schur= 1	 lambda= 0.016651	 levenbergIter= 2
iteration= 20	 chi2= 28445.405201	 time= 0.18725	 cumTime= 4.2093	 edges= 83718	 schur= 1	 lambda= 0.011101	 levenbergIter= 1
iteration= 21	 chi2= 27170.592543	 time= 0.227542	 cumTime= 4.43685	 edges= 83718	 schur= 1	 lambda= 0.011118	 levenbergIter= 2
iteration= 22	 chi2= 26748.191194	 time= 0.2271	 cumTime= 4.66395	 edges= 83718	 schur= 1	 lambda= 0.014824	 levenbergIter= 2
iteration= 23	 chi2= 26675.118188	 time= 0.18739	 cumTime= 4.85134	 edges= 83718	 schur= 1	 lambda= 0.009883	 levenbergIter= 1
iteration= 24	 chi2= 26087.985781	 time= 0.227215	 cumTime= 5.07855	 edges= 83718	 schur= 1	 lambda= 0.010281	 levenbergIter= 2
iteration= 25	 chi2= 25875.818536	 time= 0.227209	 cumTime= 5.30576	 edges= 83718	 schur= 1	 lambda= 0.013708	 levenbergIter= 2
iteration= 26	 chi2= 25831.564925	 time= 0.187807	 cumTime= 5.49357	 edges= 83718	 schur= 1	 lambda= 0.009139	 levenbergIter= 1
iteration= 27	 chi2= 25568.344873	 time= 0.227318	 cumTime= 5.72089	 edges= 83718	 schur= 1	 lambda= 0.011118	 levenbergIter= 2
iteration= 28	 chi2= 25455.865005	 time= 0.227444	 cumTime= 5.94833	 edges= 83718	 schur= 1	 lambda= 0.011781	 levenbergIter= 2
iteration= 29	 chi2= 25454.942053	 time= 0.186962	 cumTime= 6.13529	 edges= 83718	 schur= 1	 lambda= 0.007854	 levenbergIter= 1
iteration= 30	 chi2= 25260.709796	 time= 0.227445	 cumTime= 6.36274	 edges= 83718	 schur= 1	 lambda= 0.009148	 levenbergIter= 2
iteration= 31	 chi2= 25171.392636	 time= 0.227664	 cumTime= 6.5904	 edges= 83718	 schur= 1	 lambda= 0.009425	 levenbergIter= 2
iteration= 32	 chi2= 25104.160294	 time= 0.227913	 cumTime= 6.81831	 edges= 83718	 schur= 1	 lambda= 0.008637	 levenbergIter= 2
iteration= 33	 chi2= 25042.986799	 time= 0.227786	 cumTime= 7.0461	 edges= 83718	 schur= 1	 lambda= 0.008765	 levenbergIter= 2
iteration= 34	 chi2= 24984.677998	 time= 0.227546	 cumTime= 7.27365	 edges= 83718	 schur= 1	 lambda= 0.005949	 levenbergIter= 2
iteration= 35	 chi2= 24943.879912	 time= 0.22765	 cumTime= 7.5013	 edges= 83718	 schur= 1	 lambda= 0.007933	 levenbergIter= 2
iteration= 36	 chi2= 24886.075504	 time= 0.226954	 cumTime= 7.72825	 edges= 83718	 schur= 1	 lambda= 0.005674	 levenbergIter= 2
iteration= 37	 chi2= 24868.088225	 time= 0.227189	 cumTime= 7.95544	 edges= 83718	 schur= 1	 lambda= 0.007565	 levenbergIter= 2
iteration= 38	 chi2= 24833.053138	 time= 0.227247	 cumTime= 8.18269	 edges= 83718	 schur= 1	 lambda= 0.008448	 levenbergIter= 2
iteration= 39	 chi2= 24815.047826	 time= 0.22722	 cumTime= 8.40991	 edges= 83718	 schur= 1	 lambda= 0.009766	 levenbergIter= 2

用MeshLab查看的结果如下:

initial.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第8张图片

final.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第9张图片

用CloudCompare查看的结果如下:

initial.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第10张图片

final.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第11张图片

课后习题:

1. 证明式(10.25)成立。提示:你可能会用到SMW(Sherman-Morrison-Woodbury)公式,参考[6, 76]。

视觉SLAM十四讲CH9代码解析及课后习题详解_第12张图片

视觉SLAM十四讲CH9代码解析及课后习题详解_第13张图片 

视觉SLAM十四讲CH9代码解析及课后习题详解_第14张图片 

   转载于:视觉SLAM十四讲(第二版)第9讲习题解答 - 知乎

2. 对比g2o 和Ceres 的优化后目标函数的数值。指出为什么两者在Meshlab 中效果一样但为何数值却不同。

 视觉SLAM十四讲CH9代码解析及课后习题详解_第15张图片

 

视觉SLAM十四讲CH9代码解析及课后习题详解_第16张图片

 视觉SLAM十四讲CH9代码解析及课后习题详解_第17张图片

 通过对比两组优化后的值,g2o优化后的数值约为Ceres的两倍左右,原因是原因应该是两个优化库计算目标函数优化后数值的方法不一致(即计算用的范数不同);而不严格为2倍的原因与设置的迭代次数或收敛判断条件不同,出于计算成本的考虑并未做过多的迭代。但是两种优化库优化的目标函数是一致的,范数不同只会影响目标函数的数值,而实际待优化的变量的优化结果是一致的,因此最后得到在点云图像一致。

 转载于:视觉SLAM十四讲(第二版)第9讲习题解答 - 知乎

3. 给Ceres 当中的部分点云进行Schur 消元,看看结果会有什么区别。

3.cpp

#include 
#include 
#include "common.h"//使用common.h中定义的BALProblem类读入该文件的内容
#include "SnavelyReprojectionError.h"

using namespace std;

void SolveBA(BALProblem &bal_problem);//定义SolveBA函数

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "usage: bundle_adjustment_ceres bal_data.txt" << endl;//输出使用方法
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();//归一化 将所有路标点的中心置零,然后做一个合适尺度的缩放
    bal_problem.Perturb(0.1, 0.5, 0.5);//通过Perturb函数给数据加入噪声
    bal_problem.WriteToPLYFile("initial.ply");//存储最初点云
    SolveBA(bal_problem);//BA求解
    bal_problem.WriteToPLYFile("final_Ceres.ply");//存储最终点云

    return 0;
}

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // Observations is 2 * num_observations long array observations
    // [u_1, u_2, ... u_n], where each u_i is two dimensional, the x
    // and y position of the observation.
    const double *observations = bal_problem.observations();
    ceres::Problem problem;

    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        ceres::CostFunction *cost_function;

        // Each Residual block takes a point and a camera as input
        // and outputs a 2 dimensional Residual
        cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]);

        // If enabled use Huber's loss function.
        ceres::LossFunction *loss_function = new ceres::HuberLoss(1.0);

        // Each observation corresponds to a pair of a camera and a point
        // which are identified by camera_index()[i] and point_index()[i]
        // respectively.
        double *camera = cameras + camera_block_size * bal_problem.camera_index()[i];
        //camera_block_size = bal_problem.camera_block_size();
        //*camera = cameras + bal_problem.camera_block_size() * bal_problem.camera_index()[i]
        double *point = points + point_block_size * bal_problem.point_index()[i];
        //point_block_size = bal_problem.point_block_size();
        //*point = points + bal_problem.point_block_size() * bal_problem.point_index()[i]
        problem.AddResidualBlock(cost_function, loss_function, camera, point);// 向问题中添加误差项
        //CostFunction* : 描述最小二乘的基本形式即代价函数
        //LossFunction* : 描述核函数的形式
    }

    // show some information here ...
    std::cout << "bal problem file loaded..." << std::endl;//输出bal problem file loaded...
    std::cout << "bal problem have " << bal_problem.num_cameras() << " cameras and "
              << bal_problem.num_points() << " points. " << std::endl;//bal_problem.num_cameras()表示相机位姿个数
              //bal_problem.num_points()表示路标点数
    std::cout << "Forming " << bal_problem.num_observations() << " observations. " << std::endl;

    std::cout << "Solving ceres BA ... " << endl;//BA求解
    ceres::Solver::Options options;// 这里有很多配置项可以填Options类嵌入在Solver类中 ,在Options类中可以设置关于求解器的参数
    options.linear_solver_type = ceres::SPARSE_SCHUR;  //增量方程如何求解 这里的linear_solver_type 是一个Linear_solver_type的枚举类型的变量
    //使用Schur消元
    options.minimizer_progress_to_stdout = true;
    
    
    //SetOrdering
    ceres::ParameterBlockOrdering* ordering = new ceres::ParameterBlockOrdering;
    
    // The points come before the cameras
    // 增加的部分
    for(int i = 0; i < bal_problem.num_points(); ++i)
	if(i%2 == 0){
	    ordering->AddElementToGroup(points + point_block_size * i, 0);
	}
	else{
	    ordering->AddElementToGroup(points + point_block_size * i, 1);
	}
    
    for(int i = 0; i < bal_problem.num_cameras(); ++i)
        ordering->AddElementToGroup(cameras + camera_block_size * i, 1);

    options.linear_solver_ordering.reset(ordering);
    
    ceres::Solver::Summary summary;// 优化信息
    ceres::Solve(options, &problem, &summary);
    std::cout << summary.FullReport() << "\n";
}


CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

project(bundle_adjustment)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3 -std=c++14")

LIST(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

Find_Package(G2O REQUIRED)
Find_Package(Eigen3 REQUIRED)
Find_Package(Ceres REQUIRED)
Find_Package(Sophus REQUIRED)
Find_Package(CSparse REQUIRED)

SET(G2O_LIBS g2o_csparse_extension g2o_stuff g2o_core cxsparse)

include_directories(${PROJECT_SOURCE_DIR} ${EIGEN3_INCLUDE_DIR} ${CSPARSE_INCLUDE_DIR})

add_library(bal_common common.cpp)
add_executable(bundle_adjustment_g2o bundle_adjustment_g2o.cpp)
add_executable(bundle_adjustment_ceres bundle_adjustment_ceres.cpp)
add_executable(3 3.cpp)

target_link_libraries(bundle_adjustment_ceres ${CERES_LIBRARIES} bal_common)
target_link_libraries(3 ${CERES_LIBRARIES} bal_common)
target_link_libraries(bundle_adjustment_g2o ${G2O_LIBS} bal_common)

执行结果:

./3 ../problem-16-22106-pre.txt 
Header: 16 22106 83718bal problem file loaded...
bal problem have 16 cameras and 22106 points. 
Forming 83718 observations. 
Solving ceres BA ... 
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.842900e+07    0.00e+00    2.04e+06   0.00e+00   0.00e+00  1.00e+04        0    6.00e-02    1.28e-01
   1  1.449093e+06    1.70e+07    1.75e+06   2.16e+03   1.84e+00  3.00e+04        1    4.08e-01    5.36e-01
   2  5.848543e+04    1.39e+06    1.30e+06   1.55e+03   1.87e+00  9.00e+04        1    2.15e+00    2.69e+00
   3  1.581483e+04    4.27e+04    4.98e+05   4.98e+02   1.29e+00  2.70e+05        1    3.21e-01    3.01e+00
   4  1.251823e+04    3.30e+03    4.64e+04   9.96e+01   1.11e+00  8.10e+05        1    7.72e-01    3.78e+00
   5  1.240936e+04    1.09e+02    9.78e+03   1.33e+01   1.42e+00  2.43e+06        1    7.96e-01    4.58e+00
   6  1.237699e+04    3.24e+01    3.91e+03   5.04e+00   1.70e+00  7.29e+06        1    3.24e-01    4.90e+00
   7  1.236187e+04    1.51e+01    1.96e+03   3.40e+00   1.75e+00  2.19e+07        1    1.01e+00    5.91e+00
   8  1.235405e+04    7.82e+00    1.03e+03   2.40e+00   1.76e+00  6.56e+07        1    6.00e-01    6.51e+00
   9  1.234934e+04    4.71e+00    5.04e+02   1.67e+00   1.87e+00  1.97e+08        1    8.31e-01    7.34e+00
  10  1.234610e+04    3.24e+00    4.31e+02   1.15e+00   1.88e+00  5.90e+08        1    3.16e-01    7.66e+00
  11  1.234386e+04    2.24e+00    3.27e+02   8.44e-01   1.90e+00  1.77e+09        1    6.69e-01    8.33e+00
  12  1.234232e+04    1.54e+00    3.44e+02   6.69e-01   1.82e+00  5.31e+09        1    7.12e-01    9.04e+00
  13  1.234126e+04    1.07e+00    2.21e+02   5.45e-01   1.91e+00  1.59e+10        1    3.22e-01    9.36e+00
  14  1.234047e+04    7.90e-01    1.12e+02   4.84e-01   1.87e+00  4.78e+10        1    8.57e-01    1.02e+01
  15  1.233986e+04    6.07e-01    1.02e+02   4.22e-01   1.95e+00  1.43e+11        1    6.82e-01    1.09e+01
  16  1.233934e+04    5.22e-01    1.03e+02   3.82e-01   1.97e+00  4.30e+11        1    8.30e-01    1.17e+01
  17  1.233891e+04    4.25e-01    1.07e+02   3.46e-01   1.93e+00  1.29e+12        1    5.08e-01    1.22e+01
  18  1.233855e+04    3.59e-01    1.04e+02   3.15e-01   1.96e+00  3.87e+12        1    1.42e+00    1.37e+01
  19  1.233825e+04    3.06e-01    9.27e+01   2.88e-01   1.98e+00  1.16e+13        1    6.68e-01    1.43e+01
  20  1.233799e+04    2.61e-01    1.17e+02   2.16e-01   1.97e+00  3.49e+13        1    4.79e-01    1.48e+01
  21  1.233777e+04    2.18e-01    1.22e+02   1.15e-01   1.97e+00  1.05e+14        1    3.24e-01    1.51e+01
  22  1.233760e+04    1.73e-01    1.10e+02   9.14e-02   1.89e+00  3.14e+14        1    1.06e+00    1.62e+01
  23  1.233746e+04    1.37e-01    1.14e+02   1.02e-01   1.98e+00  9.41e+14        1    4.57e-01    1.66e+01
  24  1.233735e+04    1.13e-01    1.18e+02   4.15e-01   1.96e+00  2.82e+15        1    1.48e+00    1.81e+01
WARNING: Logging before InitGoogleLogging() is written to STDERR
W1122 19:03:05.843412 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  25  1.233735e+04    0.00e+00    1.18e+02   0.00e+00   0.00e+00  1.41e+15        1    2.44e-01    1.84e+01
  26  1.233725e+04    9.50e-02    1.20e+02   3.38e-01   1.99e+00  4.24e+15        1    6.33e-01    1.90e+01
W1122 19:03:06.786262 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  27  1.233725e+04    0.00e+00    1.20e+02   0.00e+00   0.00e+00  2.12e+15        1    3.09e-01    1.93e+01
W1122 19:03:08.919662 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  28  1.233725e+04    0.00e+00    1.20e+02   0.00e+00   0.00e+00  5.30e+14        1    2.13e+00    2.15e+01
  29  1.233718e+04    6.92e-02    5.73e+01   1.79e-01   1.70e+00  1.59e+15        1    3.51e-01    2.18e+01
  30  1.233714e+04    3.65e-02    5.90e+01   2.64e-01   1.93e+00  4.77e+15        1    6.57e-01    2.25e+01
W1122 19:03:10.162851 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  31  1.233714e+04    0.00e+00    5.90e+01   0.00e+00   0.00e+00  2.38e+15        1    2.35e-01    2.27e+01
  32  1.233711e+04    3.32e-02    6.03e+01   3.72e-01   2.00e+00  7.15e+15        1    3.50e-01    2.30e+01
W1122 19:03:12.127734 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  33  1.233711e+04    0.00e+00    6.03e+01   0.00e+00   0.00e+00  3.57e+15        1    1.62e+00    2.47e+01
W1122 19:03:13.732683 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  34  1.233711e+04    0.00e+00    6.03e+01   0.00e+00   0.00e+00  8.94e+14        1    1.60e+00    2.63e+01
  35  1.233708e+04    3.14e-02    6.11e+01   1.57e-01   2.00e+00  2.68e+15        1    5.22e-01    2.68e+01
W1122 19:03:15.195761 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  36  1.233708e+04    0.00e+00    6.11e+01   0.00e+00   0.00e+00  1.34e+15        1    9.41e-01    2.77e+01
  37  1.233705e+04    2.50e-02    2.63e+01   1.16e+00   1.68e+00  4.02e+15        1    9.47e-01    2.87e+01
W1122 19:03:16.358913 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  38  1.233705e+04    0.00e+00    2.63e+01   0.00e+00   0.00e+00  2.01e+15        1    2.16e-01    2.89e+01
W1122 19:03:17.128914 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  39  1.233705e+04    0.00e+00    2.63e+01   0.00e+00   0.00e+00  5.03e+14        1    7.70e-01    2.97e+01
  40  1.233704e+04    1.58e-02    2.05e+01   6.65e-02   1.95e+00  1.51e+15        1    7.94e-01    3.05e+01
  41  1.233702e+04    1.51e-02    2.03e+01   2.79e-01   2.00e+00  4.52e+15        1    1.18e+00    3.16e+01
W1122 19:03:20.707713 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  42  1.233702e+04    0.00e+00    2.03e+01   0.00e+00   0.00e+00  2.26e+15        1    1.60e+00    3.32e+01
W1122 19:03:20.973563 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  43  1.233702e+04    0.00e+00    2.03e+01   0.00e+00   0.00e+00  5.65e+14        1    2.66e-01    3.35e+01
  44  1.233701e+04    1.48e-02    2.08e+01   1.04e-01   1.99e+00  1.70e+15        1    9.80e-01    3.45e+01
W1122 19:03:22.562964 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  45  1.233701e+04    0.00e+00    2.08e+01   0.00e+00   0.00e+00  8.48e+14        1    6.09e-01    3.51e+01
  46  1.233700e+04    1.42e-02    2.08e+01   1.87e-01   1.99e+00  2.54e+15        1    9.93e-01    3.61e+01
W1122 19:03:23.788686 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  47  1.233700e+04    0.00e+00    2.08e+01   0.00e+00   0.00e+00  1.27e+15        1    2.32e-01    3.63e+01
  48  1.233698e+04    1.39e-02    2.10e+01   2.29e-01   2.00e+00  3.82e+15        1    6.85e-01    3.70e+01
W1122 19:03:24.716567 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  49  1.233698e+04    0.00e+00    2.10e+01   0.00e+00   0.00e+00  1.91e+15        1    2.43e-01    3.72e+01
W1122 19:03:25.241986 16451 levenberg_marquardt_strategy.cc:115] Linear solver failure. Failed to compute a step: CHOLMOD warning: Matrix not positive definite.
  50  1.233698e+04    0.00e+00    2.10e+01   0.00e+00   0.00e+00  4.77e+14        1    5.25e-01    3.78e+01

Solver Summary (v 2.0.0-eigen-(3.4.0)-lapack-suitesparse-(5.7.1)-cxsparse-(3.2.0)-eigensparse-no_openmp)

                                     Original                  Reduced
Parameter blocks                        22122                    22122
Parameters                              66462                    66462
Residual blocks                         83718                    83718
Residuals                              167436                   167436

Minimizer                        TRUST_REGION

Sparse linear algebra library    SUITE_SPARSE
Trust region strategy     LEVENBERG_MARQUARDT

                                        Given                     Used
Linear solver                    SPARSE_SCHUR             SPARSE_SCHUR
Threads                                     1                        1
Linear solver ordering            11053,11069              11053,11069
Schur structure                         2,3,9                    2,3,9

Cost:
Initial                          1.842900e+07
Final                            1.233698e+04
Change                           1.841667e+07

Minimizer iterations                       51
Successful steps                           36
Unsuccessful steps                         15

Time (in seconds):
Preprocessor                         0.068341

  Residual only evaluation           0.573730 (35)
  Jacobian & residual evaluation     2.530812 (36)
  Linear solver                     34.263239 (50)
Minimizer                           37.707409

Postprocessor                        0.005249
Total                               37.781000

Termination:                   NO_CONVERGENCE (Maximum number of iterations reached. Number of iterations: 50.)

 用MeshLab查看的结果如下:

initial.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第18张图片

final.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第19张图片

 用CloudCompare查看的结果如下:

initial.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第20张图片

final.ply

视觉SLAM十四讲CH9代码解析及课后习题详解_第21张图片

  转载于:视觉SLAM十四讲(第二版)第9讲习题解答 - 知乎

4. 证明S矩阵为半正定矩阵。

  转载于:视觉SLAM十四讲(第二版)第9讲习题解答 - 知乎

 

 

 

5. 阅读[36],看看g2o 对核函数是如何处理的。与Ceres 中的Loss function 有何联系?

**************************************************************************

6. *在两个示例中,我们优化了相机位姿、以 f , k1 , k2 为参数的相机内参以及路标点。请考虑使用第五章介绍的完整的相机模型进行优化,即,至少考虑fx,fy,p1,p2,k1,k2 fx​,fy​,p1​,p2​,k1​,k2​这些量。修改现在的Ceres 和g2o 程序以完成实验。

转载于:视觉SLAM十四讲(第二版)第9讲习题解答 - 知乎

代码链接:HW-of-SLAMBOOK2/hw9/p6 at main · Philipcjh/HW-of-SLAMBOOK2 · GitHub

如果你觉得复制麻烦的话,从我的百度网盘里面下载,我写了一些注释。

链接:https://pan.baidu.com/s/1m4G4dPMbGha_zFo5Tg4t2g 
提取码:8888

执行结果:

6_Ceres_completed.cpp

./bundle_adjustment_ceres_completed ../problem-16-22106-pre.txt 

Header: 16 22106 83718Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. bal problem file loaded...
bal problem have 16 cameras and 22106 points. 
Forming 83718 observations. 
Solving ceres BA ... 
iter      cost      cost_change  |gradient|   |step|    tr_ratio  tr_radius  ls_iter  iter_time  total_time
   0  1.426053e+31    0.00e+00    3.68e+34   0.00e+00   0.00e+00  1.00e+04        0    9.02e-02    2.15e-01
   1  1.008312e+37   -1.01e+37    3.68e+34   1.82e+11  -1.41e+06  5.00e+03        1    8.51e-02    3.01e-01
   2  4.842222e+35   -4.84e+35    3.68e+34   3.11e+11  -6.79e+04  1.25e+03        1    1.05e-01    4.06e-01
   3  6.188762e+33   -6.17e+33    3.68e+34   7.42e+11  -8.66e+02  1.56e+02        1    1.03e-01    5.09e-01
   4  2.614653e+43   -2.61e+43    3.68e+34   1.37e+12  -3.67e+12  9.77e+00        1    1.08e-01    6.18e-01
   5  2.929472e+47   -2.93e+47    3.68e+34   1.15e+12  -4.11e+16  3.05e-01        1    1.07e-01    7.25e-01
   6  2.178687e+41   -2.18e+41    3.68e+34   2.96e+11  -3.25e+10  4.77e-03        1    1.07e-01    8.31e-01
   7  4.184920e+35   -4.18e+35    3.68e+34   6.13e+09  -6.45e+05  3.73e-05        1    1.05e-01    9.37e-01
   8  1.425515e+31    5.39e+27    3.68e+34   5.01e+07   9.90e-01  1.12e-04        1    2.11e-01    1.15e+00
   9  1.423901e+31    1.61e+28    3.68e+34   1.45e+09   1.00e+00  3.35e-04        1    1.85e-01    1.33e+00
  10  1.419087e+31    4.81e+28    3.66e+34   1.21e+10   1.00e+00  1.01e-03        1    1.80e-01    1.51e+00
  11  1.404909e+31    1.42e+29    3.62e+34   7.59e+10   1.00e+00  3.02e-03        1    1.85e-01    1.70e+00
  12  1.363402e+31    4.15e+29    3.50e+34   1.02e+12   1.00e+00  9.05e-03        1    1.86e-01    1.88e+00
  13  1.253174e+31    1.10e+30    3.18e+34   8.45e+12   9.99e-01  2.72e-02        1    1.86e-01    2.07e+00
  14  1.044141e+31    2.09e+30    1.93e+34   3.20e+13   8.72e-01  4.61e-02        1    1.86e-01    2.25e+00
  15  3.207461e+31   -2.16e+31    1.93e+34   1.75e+14  -9.41e+00  2.30e-02        1    7.77e-02    2.33e+00
  16  9.036078e+30    1.41e+30    1.65e+34   1.05e+14   1.01e+00  6.91e-02        1    2.09e-01    2.54e+00
  17  8.286968e+30    7.49e+29    2.66e+35   2.54e+14   2.99e-01  6.49e-02        1    1.79e-01    2.72e+00
  18  7.190000e+30    1.10e+30    1.42e+35   2.52e+14   4.68e-01  6.49e-02        1    1.86e-01    2.91e+00
  19  5.029735e+31   -4.31e+31    1.42e+35   2.46e+14  -2.20e+01  3.24e-02        1    7.81e-02    2.98e+00
  20  5.913780e+30    1.28e+30    1.12e+35   1.52e+14   1.01e+00  9.73e-02        1    2.09e-01    3.19e+00
  21  3.895439e+30    2.02e+30    6.83e+34   2.46e+14   1.04e+00  2.92e-01        1    1.86e-01    3.38e+00
  22  6.451373e+31   -6.06e+31    6.83e+34   2.03e+14  -3.48e+01  1.46e-01        1    8.43e-02    3.46e+00
  23  8.985577e+30   -5.09e+30    6.83e+34   1.41e+14  -3.43e+00  3.65e-02        1    1.07e-01    3.57e+00
  24  3.157985e+30    7.37e+29    5.28e+34   6.72e+13   1.01e+00  1.09e-01        1    2.07e-01    3.78e+00
  25  4.685928e+30   -1.53e+30    5.28e+34   1.91e+14  -1.40e+00  5.47e-02        1    8.29e-02    3.86e+00
  26  2.368461e+30    7.90e+29    3.73e+34   1.30e+14   1.02e+00  1.64e-01        1    2.12e-01    4.07e+00
  27  1.481967e+30    8.86e+29    1.40e+35   2.11e+14   9.46e-01  4.93e-01        1    1.83e-01    4.26e+00
  28  4.679656e+30   -3.20e+30    1.40e+35   1.41e+14  -4.53e+00  2.46e-01        1    8.20e-02    4.34e+00
  29  2.100742e+31   -1.95e+31    1.40e+35   1.18e+14  -3.02e+01  6.16e-02        1    1.05e-01    4.44e+00
  30  1.056929e+30    4.25e+29    4.74e+34   7.08e+13   1.04e+00  1.85e-01        1    2.11e-01    4.66e+00
  31  5.467407e+32   -5.46e+32    4.74e+34   1.03e+14  -1.27e+03  9.24e-02        1    8.24e-02    4.74e+00
  32  7.092017e+29    3.48e+29    1.27e+34   8.10e+13   1.02e+00  2.77e-01        1    2.05e-01    4.94e+00
  33  3.803746e+29    3.29e+29    4.81e+33   9.20e+13   1.08e+00  8.32e-01        1    1.84e-01    5.13e+00
  34  1.645500e+29    2.16e+29    1.71e+33   1.53e+14   1.17e+00  2.49e+00        1    1.80e-01    5.31e+00
  35  2.481753e+30   -2.32e+30    1.71e+33   9.50e+13  -2.83e+01  1.25e+00        1    8.29e-02    5.39e+00
  36  3.379389e+29   -1.73e+29    1.71e+33   7.89e+13  -2.14e+00  3.12e-01        1    1.09e-01    5.50e+00
  37  8.709032e+28    7.75e+28    8.26e+32   4.29e+13   1.09e+00  9.35e-01        1    2.09e-01    5.71e+00
  38  3.758940e+28    4.95e+28    3.31e+32   7.02e+13   1.17e+00  2.81e+00        1    1.84e-01    5.89e+00
  39  1.447295e+28    2.31e+28    1.21e+32   5.62e+13   1.24e+00  8.42e+00        1    1.88e-01    6.08e+00
  40  5.215108e+27    9.26e+27    5.81e+31   2.03e+13   1.28e+00  2.53e+01        1    1.88e-01    6.27e+00
  41  2.598177e+27    2.62e+27    4.01e+32   1.27e+13   1.00e+00  7.58e+01        1    1.86e-01    6.45e+00
  42  5.998289e+28   -5.74e+28    4.01e+32   2.08e+13  -4.42e+01  3.79e+01        1    8.29e-02    6.54e+00
  43  8.879112e+26    1.71e+27    1.37e+32   1.31e+13   1.32e+00  1.14e+02        1    2.06e-01    6.74e+00
  44  6.137729e+26    2.74e+26    1.32e+32   1.14e+13   6.18e-01  1.15e+02        1    1.85e-01    6.93e+00
  45  2.636900e+27   -2.02e+27    1.32e+32   7.16e+12  -6.59e+00  5.76e+01        1    8.48e-02    7.01e+00
  46  6.345956e+27   -5.73e+27    1.32e+32   5.80e+12  -1.87e+01  1.44e+01        1    1.08e-01    7.12e+00
  47  4.407903e+31   -4.41e+31    1.32e+32   2.33e+12  -1.44e+05  1.80e+00        1    1.10e-01    7.23e+00
  48  7.113510e+35   -7.11e+35    1.32e+32   1.68e+11  -2.34e+09  1.12e-01        1    1.08e-01    7.34e+00
  49  3.967797e+26    2.17e+26    7.54e+31   5.16e+10   1.04e+00  3.37e-01        1    2.10e-01    7.55e+00
  50  1.961998e+26    2.01e+26    3.30e+31   1.37e+11   1.13e+00  1.01e+00        1    1.81e-01    7.73e+00

Solver Summary (v 2.0.0-eigen-(3.4.0)-lapack-suitesparse-(5.7.1)-cxsparse-(3.2.0)-eigensparse-no_openmp)

                                     Original                  Reduced
Parameter blocks                        22122                    22122
Parameters                              66510                    66510
Residual blocks                         83718                    83718
Residuals                              167436                   167436

Minimizer                        TRUST_REGION

Sparse linear algebra library    SUITE_SPARSE
Trust region strategy     LEVENBERG_MARQUARDT

                                        Given                     Used
Linear solver                    SPARSE_SCHUR             SPARSE_SCHUR
Threads                                     1                        1
Linear solver ordering              AUTOMATIC                 22106,16
Schur structure                        2,3,12                    2,3,d

Cost:
Initial                          1.426053e+31
Final                            1.961998e+26
Change                           1.426034e+31

Minimizer iterations                       51
Successful steps                           29
Unsuccessful steps                         22

Time (in seconds):
Preprocessor                         0.125221

  Residual only evaluation           0.829317 (50)
  Jacobian & residual evaluation     2.835020 (29)
  Linear solver                      3.583899 (50)
Minimizer                            7.606891

Postprocessor                        0.003257
Total                                7.735369

Termination:                   NO_CONVERGENCE (Maximum number of iterations reached. Number of iterations: 50.)

6_g2o_completed.cpp

./bundle_adjustment_g2o_completed ../problem-16-22106-pre.txt 
Header: 16 22106 83718Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. Invalid UW data file. iteration= 0	 chi2= 11448902579012400459871397347328.000000	 time= 0.259172	 cumTime= 0.259172	 edges= 83718	 schur= 1	 lambda= 530700671390243807692080956833792.000000	 levenbergIter= 1
iteration= 1	 chi2= 4595260219343684448692142604288.000000	 time= 0.230507 cumTime= 0.489678	 edges= 83718	 schur= 1	 lambda= 176900223796747911878162306301952.000000	 levenbergIter= 1
iteration= 2	 chi2= 1844418264889403638802200657920.000000	 time= 0.231039 cumTime= 0.720717	 edges= 83718	 schur= 1	 lambda= 58966741265582631287921265606656.000000	 levenbergIter= 1
iteration= 3	 chi2= 740659536427463787514855161856.000000	 time= 0.23078	 cumTime= 0.951497	 edges= 83718	 schur= 1	 lambda= 19655580421860876345373817307136.000000	 levenbergIter= 1
iteration= 4	 chi2= 297997717305666076069010079744.000000	 time= 0.230924 cumTime= 1.18242	 edges= 83718	 schur= 1	 lambda= 6551860140620291739824636821504.000000	 levenbergIter= 1
iteration= 5	 chi2= 120132864063713142033520525312.000000	 time= 0.231252 cumTime= 1.41367	 edges= 83718	 schur= 1	 lambda= 2183953380206763819449886703616.000000	 levenbergIter= 1
iteration= 6	 chi2= 48492549339466582870215098368.000000	 time= 0.230615 cumTime= 1.64429	 edges= 83718	 schur= 1	 lambda= 727984460068921226237466116096.000000	 levenbergIter= 1
iteration= 7	 chi2= 19607328009167539406754545664.000000	 time= 0.23144	 cumTime= 1.87573	 edges= 83718	 schur= 1	 lambda= 242661486689640397017698009088.000000	 levenbergIter= 1
iteration= 8	 chi2= 7946374249468844297911533568.000000	 time= 0.230603 cumTime= 2.10633	 edges= 83718	 schur= 1	 lambda= 80887162229880132339232669696.000000	 levenbergIter= 1
iteration= 9	 chi2= 3229669490728618606303641600.000000	 time= 0.230941 cumTime= 2.33727	 edges= 83718	 schur= 1	 lambda= 26962387409960042647062052864.000000	 levenbergIter= 1
iteration= 10	 chi2= 1317245444053740616599732224.000000	 time= 0.23097	 cumTime= 2.56824	 edges= 83718	 schur= 1	 lambda= 8987462469986680515850141696.000000	 levenbergIter= 1
iteration= 11	 chi2= 539852484883824402979880960.000000	 time= 0.231086 cumTime= 2.79933	 edges= 83718	 schur= 1	 lambda= 2995820823328893138779504640.000000	 levenbergIter= 1
iteration= 12	 chi2= 222523785803762087938228224.000000	 time= 0.230812 cumTime= 3.03014	 edges= 83718	 schur= 1	 lambda= 998606941109631046259834880.000000	 levenbergIter= 1
iteration= 13	 chi2= 92228822367983213205258240.000000	 time= 0.230748 cumTime= 3.26089	 edges= 83718	 schur= 1	 lambda= 332868980369877015419944960.000000	 levenbergIter= 1
iteration= 14	 chi2= 38407193365467773615996928.000000	 time= 0.230722 cumTime= 3.49161	 edges= 83718	 schur= 1	 lambda= 110956326789958999413358592.000000	 levenbergIter= 1
iteration= 15	 chi2= 16056314699064937797386240.000000	 time= 0.230833 cumTime= 3.72244	 edges= 83718	 schur= 1	 lambda= 36985442263319663607808000.000000	 levenbergIter= 1
iteration= 16	 chi2= 6734886581315290875822080.000000	 time= 0.230534	 cumTime= 3.95298	 edges= 83718	 schur= 1	 lambda= 12328480754439886437613568.000000	 levenbergIter= 1
iteration= 17	 chi2= 2829306185676062361387008.000000	 time= 0.230895	 cumTime= 4.18387	 edges= 83718	 schur= 1	 lambda= 4109493584813295300247552.000000	 levenbergIter= 1
iteration= 18	 chi2= 1180828120018257134485504.000000	 time= 0.230913	 cumTime= 4.41478	 edges= 83718	 schur= 1	 lambda= 1369831194937765010604032.000000	 levenbergIter= 1
iteration= 19	 chi2= 476259064945792176357376.000000	 time= 0.230834	 cumTime= 4.64562	 edges= 83718	 schur= 1	 lambda= 456610398312588292128768.000000	 levenbergIter= 1
iteration= 20	 chi2= 172223130510230229614592.000000	 time= 0.230728	 cumTime= 4.87635	 edges= 83718	 schur= 1	 lambda= 152203466104196097376256.000000	 levenbergIter= 1
iteration= 21	 chi2= 53259651355799862640640.000000	 time= 0.230701	 cumTime= 5.10705	 edges= 83718	 schur= 1	 lambda= 50734488701398696329216.000000	 levenbergIter= 1
iteration= 22	 chi2= 17376547137931345657856.000000	 time= 0.230627	 cumTime= 5.33767	 edges= 83718	 schur= 1	 lambda= 16911496233799565443072.000000	 levenbergIter= 1
iteration= 23	 chi2= 5578663258492342632448.000000	 time= 0.230643	 cumTime= 5.56832	 edges= 83718	 schur= 1	 lambda= 5637165411266521464832.000000	 levenbergIter= 1
iteration= 24	 chi2= 2311970972739212148736.000000	 time= 0.23078	 cumTime= 5.7991	 edges= 83718	 schur= 1	 lambda= 1879055137088840400896.000000	 levenbergIter= 1
iteration= 25	 chi2= 959849145519869001728.000000	 time= 0.231137	 cumTime= 6.03023	 edges= 83718	 schur= 1	 lambda= 626351712362946756608.000000	 levenbergIter= 1
iteration= 26	 chi2= 382583584621919207424.000000	 time= 0.230728	 cumTime= 6.26096	 edges= 83718	 schur= 1	 lambda= 208783904120982241280.000000	 levenbergIter= 1
iteration= 27	 chi2= 143775983664472834048.000000	 time= 0.230823	 cumTime= 6.49178	 edges= 83718	 schur= 1	 lambda= 69594634706994077696.000000	 levenbergIter= 1
iteration= 28	 chi2= 49769152496296599552.000000	 time= 0.231674	 cumTime= 6.72346	 edges= 83718	 schur= 1	 lambda= 23198211568998023168.000000	 levenbergIter= 1
iteration= 29	 chi2= 19489607644068515840.000000	 time= 0.231787	 cumTime= 6.95524	 edges= 83718	 schur= 1	 lambda= 7732737189666007040.000000	 levenbergIter= 1
iteration= 30	 chi2= 10393343318164428800.000000	 time= 0.231142	 cumTime= 7.18639	 edges= 83718	 schur= 1	 lambda= 2577579063222002176.000000	 levenbergIter= 1
iteration= 31	 chi2= 5605414270446759936.000000	 time= 0.231288	 cumTime= 7.41768	 edges= 83718	 schur= 1	 lambda= 859193021074000640.000000	 levenbergIter= 1
iteration= 32	 chi2= 2996642648132236288.000000	 time= 0.231316	 cumTime= 7.64899	 edges= 83718	 schur= 1	 lambda= 286397673691333536.000000	 levenbergIter= 1
iteration= 33	 chi2= 1573007263301203712.000000	 time= 0.230242	 cumTime= 7.87923	 edges= 83718	 schur= 1	 lambda= 95465891230444512.000000	 levenbergIter= 1
iteration= 34	 chi2= 804389888780158208.000000	 time= 0.230831	 cumTime= 8.11007	 edges= 83718	 schur= 1	 lambda= 31821963743481504.000000	 levenbergIter= 1
iteration= 35	 chi2= 397544280164181824.000000	 time= 0.230988	 cumTime= 8.34105	 edges= 83718	 schur= 1	 lambda= 10607321247827168.000000	 levenbergIter= 1
iteration= 36	 chi2= 187995528807614912.000000	 time= 0.230492	 cumTime= 8.57155	 edges= 83718	 schur= 1	 lambda= 3535773749275722.500000 levenbergIter= 1
iteration= 37	 chi2= 83317161800343920.000000	 time= 0.230595	 cumTime= 8.80214	 edges= 83718	 schur= 1	 lambda= 1178591249758574.000000	 levenbergIter= 1
iteration= 38	 chi2= 31937020605604204.000000	 time= 0.230731	 cumTime= 9.03287	 edges= 83718	 schur= 1	 lambda= 392863749919524.625000	 levenbergIter= 1
iteration= 39	 chi2= 7428030063663569.000000	 time= 0.230605	 cumTime= 9.26348	 edges= 83718	 schur= 1	 lambda= 130954583306508.203125	 levenbergIter= 1

你可能感兴趣的:(视觉SLAM十四讲,计算机视觉,c++)