PyTorch是由Facebook人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库,目前被广泛应用于学术界和工业界,而随着Caffe2项目并入Pytorch, Pytorch开始影响到TensorFlow在深度学习应用框架领域的地位。总的来说,PyTorch是当前难得的简洁优雅且高效快速的框架。
几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量,矩阵就是二阶张量。在深度学习中,我们通常将数据以张量的形式进行表示,比如我们用三维张量表示一个RGB图像,四维张量表示视频。
张量是现代机器学习的基础。它的核心是一个数据容器,多数情况下,它包含数字,有时候它也包含字符串,但这种情况比较少。因此可以把它想象成一个数字的水桶。
这里有一些存储在各种类型张量的公用数据集类型:
3维 = 时间序列
4维 = 图像
5维 = 视频
例子:一个图像可以用三个字段表示:
(width, height, channel) = 3D
但是,在机器学习工作中,我们经常要处理不止一张图片或一篇文档——我们要处理一个集合。我们可能有10,000张郁金香的图片,这意味着,我们将用到4D张量:
(batch_size, width, height, channel) = 4D
Awesome-pytorch-list:目前已获12K Star,包含了NLP,CV,常见库,论文实现以及Pytorch的其他项目。
PyTorch官方文档:官方发布的文档,十分丰富。
Pytorch-handbook:GitHub上已经收获14.8K,pytorch手中书。
PyTorch官方社区:PyTorch拥有一个活跃的社区,在这里你可以和开发pytorch的人们进行交流。
PyTorch官方tutorials:官方编写的tutorials,可以结合colab边动手边学习
动手学深度学习:动手学深度学习是由李沐老师主讲的一门深度学习入门课,拥有成熟的书籍资源和课程资源,在B站,Youtube均有回放。
Awesome-PyTorch-Chinese:常见的中文优质PyTorch资源
推荐搭配:Anaconda+Pytorch+ IDE(如Spyder、PyCharm)
安装过程可参考:https://datawhalechina.github.io/thorough-pytorch/%E7%AC%AC%E4%B8%80%E7%AB%A0/1.2%20PyTorch%E7%9A%84%E5%AE%89%E8%A3%85.html#
在PyTorch中, torch.Tensor
是存储和变换数据的主要工具。如果你之前用过NumPy
,你会发现 Tensor
和NumPy的多维数组非常类似。然而,Tensor
提供GPU计算和自动求梯度等更多功能,这些使 Tensor
这一数据类型更加适合深度学习。
(1)随机初始化矩阵 我们可以通过torch.rand()
的方法,构造一个随机初始化的矩阵
import torch
x = torch.rand(4, 3)
print(x)
(2)全0矩阵的构建 我们可以通过torch.zeros()
构造一个矩阵全为 0,并且通过dtype
设置数据类型为 long。除此以外,我们还可以通过torch.zero_()和torch.zeros_like()将现有矩阵转换为全0矩阵.
import torch
x = torch.zeros(4, 3, dtype=torch.long)
print(x)
(3)直接构建张量。 我们可以通过torch.tensor()
直接使用数据,构造一个张量:
import torch
x = torch.tensor([5.5, 3])
print(x) # tensor([5.5000, 3.0000])
print(x.size()) # torch.Size([2])
x = torch.tensor([[5.5, 3],])
print(x) # tensor([[5.5000, 3.0000]])
print(x.size()) # torch.Size([1, 2])
x = torch.tensor([[5.5], [3]])
print(x) # tensor([[5.5000],
# [3.0000]])
print(x.size()) # torch.Size([2, 1])
(4)基于已经存在的 tensor,创建一个 tensor :
x = x.new_ones(4, 3, dtype=torch.double)
# 创建一个新的全1矩阵tensor,返回的tensor默认具有相同的torch.dtype和torch.device
# 也可以像之前的写法 x = torch.ones(4, 3, dtype=torch.double)
x = torch.randn_like(x, dtype=torch.float) # 重置数据类型,生成具有一样size的随机数矩阵
print(x)
print(x.size()) # torch.Size([4, 3])
print(x.shape) # torch.Size([4, 3])
print(x.shape[0]) # 2
(5)常见的构造Tensor的方法: import torch
函数 |
功能 |
---|---|
Tensor(sizes) |
基础构造函数 |
tensor(data) |
类似于np.array |
ones(sizes) |
全1 |
zeros(sizes) |
全0 |
eye(sizes) |
对角为1,其余为0 |
arange(s,e,step) |
从s到e,步长为step |
linspace(s,e,steps) |
从s到e,均匀分成step份 |
rand/randn(sizes) |
rand是[0,1)均匀分布;randn是服从N(0,1)的正态分布 |
normal(mean,std) |
正态分布(均值为mean,标准差是std) |
randperm(m) |
随机排列 |
PyTorch中的 Tensor 支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,具体使用方法可参考官方文档。
(1)加法操作:下述三种方式计算结果一致
import torch
# 方式1
y = torch.rand(4, 3)
print(x + y)
# 方式2
print(torch.add(x, y))
# 方式3 in-place,原值修改
y.add_(x)
print(y)
(2)索引操作:(类似于numpy)
需要注意的是:索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。如果不想修改,可以考虑使用copy()等方法。
import torch
x = torch.rand(4,3)
# 取第二列
print(x[:, 1]) # tensor([-0.0720, 0.0666, 1.0336, -0.6965])
y = x[0,:]
y += 1
print(y) # tensor([3.7311, 0.9280, 1.2497])
print(x[0, :]) # tensor([3.7311, 0.9280, 1.2497])。源tensor也被改了了
(3)维度变换 张量的维度变换常见的方法有torch.view()
和torch.reshape()
,下面我们将介绍第一中方法torch.view()
:
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # -1是指这一维的维数由其他维度决定
print(x.size(), y.size(), z.size()) # torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
x += 1
print(x)
print(y) # 也加了了1
注: torch.view()
返回的新tensor
与源tensor
共享内存(其实是同一个tensor
),更改其中的一个,另外一个也会跟着改变。(顾名思义,view()仅仅是改变了对这个张量的观察角度)
上面我们说过torch.view()会改变原始张量,但是很多情况下,我们希望原始张量和变换后的张量互相不影响。为为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape()
, 同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用。推荐的方法是我们先用 clone()
创造一个张量副本然后再使用 torch.view()
进行函数维度变换 。
注:使用 clone()
还有一个好处是会被记录在计算图中,即梯度回传到副本时也会传到源 Tensor 。
(4)取值操作 如果我们有一个元素 tensor
,我们可以使用 .item()
来获得这个 value
,而不获得其他性质:
import torch
x = torch.randn(1)
print(type(x)) #
print(type(x.item())) #
当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。
x = torch.arange(1, 3).view(1, 2)
print(x) # tensor([[1, 2]])
y = torch.arange(1, 4).view(3, 1)
print(y) # tensor([[1],
# [2],
# [3]])
print(x + y) # tensor([[2, 3],
# [3, 4],
# [4, 5]])
PyTorch 中,所有神经网络的核心是 autograd
包。autograd包为张量上的所有操作提供了自动求导机制。它是一个在运行时定义 (define-by-run)的框架,这意味着反向传播是根据代码如何运行来决定的,并且每次迭代可以是不同的。
个包的核心类。如果设置它的属性 .requires_grad
为 True
,那么它将会追踪对于该张量的所有操作。当完成计算后可以通过调用 .backward()
,来自动计算所有的梯度。这个张量的所有梯度将会自动累加到.grad
属性。
注意:在 y.backward() 时,如果 y 是标量,则不需要为 backward() 传入任何参数;否则,需要传入一个与 y 同形的Tensor。
要阻止一个张量被跟踪历史,可以调用.detach()
方法将其与计算历史分离,并阻止它未来的计算记录被跟踪。为了防止跟踪历史记录(和使用内存),可以将代码块包装在 with torch.no_grad():
中。在评估模型时特别有用,因为模型可能具有 requires_grad = True
的可训练的参数,但是我们不需要在此过程中对他们进行梯度计算。
还有一个类对于autograd
的实现非常重要:Function
。Tensor
和 Function
互相连接生成了一个无环图 (acyclic graph),它编码了完整的计算历史。每个张量都有一个.grad_fn
属性,该属性引用了创建 Tensor
自身的Function
(除非这个张量是用户手动创建的,即这个张量的grad_fn
是 None
)。下面给出的例子中,张量由用户手动创建,因此grad_fn返回结果是None。
在完成一项机器学习任务时的步骤,首先需要对数据进行预处理,其中重要的步骤包括数据格式的统一和必要的数据变换,同时划分训练集和测试集。接下来选择模型,并设定损失函数和优化方法,以及对应的超参数(当然可以使用sklearn这样的机器学习库中模型自带的损失函数和优化器)。最后用模型去拟合训练集数据,并在验证集/测试集上计算模型表现。
深度学习和机器学习在流程上类似,但在代码实现上有较大的差异。首先,由于深度学习所需的样本量很大,一次加载全部数据运行可能会超出内存容量而无法实现;同时还有批(batch)训练等提高模型表现的策略,需要每次训练读取固定数量的样本送入模型中训练,因此深度学习在数据加载上需要有专门的设计。
在模型实现上,深度学习和机器学习也有很大差异。由于深度神经网络层数往往较多,同时会有一些用于实现特定功能的层(如卷积层、池化层、批正则化层、LSTM层等),因此深度神经网络往往需要“逐层”搭建,或者预先定义好可以实现特定功能的模块,再把这些模块组装起来。这种“定制化”的模型构建方式能够充分保证模型的灵活性,也对代码实现提出了新的要求。
接下来是损失函数和优化器的设定。这部分和经典机器学习的实现是类似的。但由于模型设定的灵活性,因此损失函数和优化器要能够保证反向传播能够在用户自行定义的模型结构上实现。
上述步骤完成后就可以开始训练了。我们前面介绍了GPU的概念和GPU用于并行计算加速的功能,不过程序默认是在CPU上运行的,因此在代码实现中,需要把模型和数据“放到”GPU上去做运算,同时还需要保证损失函数和优化器能够在GPU上工作。如果使用多张GPU进行训练,还需要考虑模型和数据分配、整合的问题。此外,后续计算一些指标还需要把数据“放回”CPU。这里涉及到了一系列有关于GPU的配置和操作。
深度学习中训练和验证过程最大的特点在于读入数据是按批的,每次读入一个批次的数据,放入GPU中训练,然后将损失函数反向传播回网络最前面的层,同时使用优化器调整网络参数。这里会涉及到各个模块配合的问题。训练/验证后还需要根据设定好的指标计算模型表现。
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torch.optim as optimizer
GPU的设置有两种常见的方式:
# 方案一:使用os.environ,这种情况如果使用GPU不需要设置
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
# 方案二:使用“device”,后续对要使用GPU的变量用.to(device)即可
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
有如下几个超参数可以统一设置,方便后续调试时修改:
batch size
初始学习率(初始)
训练次数(max_epochs)
batch_size = 16
# 批次的大小
lr = 1e-4
# 优化器的学习率
max_epochs = 100
PyTorch数据读入是通过Dataset+DataLoader的方式完成的,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断读入批次数据。
我们可以定义自己的Dataset类来实现灵活的数据读取,定义的类需要继承PyTorch自身的Dataset类。主要包含三个函数:
__init__
: 用于向类中传入外部参数,同时定义样本集
__getitem__
: 用于逐个读取样本集合中的元素,可以进行一定的变换,并将返回训练/验证所需的数据
__len__
: 用于返回数据集的样本数
下面以cifar10数据集为例给出构建Dataset类的方式:
import torch
from torchvision import datasets
train_data = datasets.ImageFolder(train_path, transform=data_transform)
val_data = datasets.ImageFolder(val_path, transform=data_transform)
这里使用了PyTorch自带的ImageFolder类的用于读取按一定结构存储的图片数据(path对应图片存放的目录,目录下包含若干子目录,每个子目录对应属于同一个类的图片)。其中"data_transform”可以对图像进行一定的变换,如翻转、裁剪等操作,可自己定义。这里我们会在下一章通过实战加以介绍。
这里另外给出一个例子,其中图片存放在一个文件夹,另外有一个csv文件给出了图片名称对应的标签。这种情况下需要自己来定义Dataset类:
class MyDataset(Dataset):
def __init__(self, data_dir, info_csv, image_list, transform=None):
"""
Args:
data_dir: path to image directory.
info_csv: path to the csv file containing image indexes
with corresponding labels.
image_list: path to the txt file contains image names to training/validation set
transform: optional transform to be applied on a sample.
"""
label_info = pd.read_csv(info_csv)
image_file = open(image_list).readlines()
self.data_dir = data_dir
self.image_file = image_file
self.label_info = label_info
self.transform = transform
def __getitem__(self, index):
"""
Args:
index: the index of item
Returns:
image and its labels
"""
image_name = self.image_file[index].strip('\n')
raw_label = self.label_info.loc[self.label_info['Image_index'] == image_name]
label = raw_label.iloc[:,0]
image_name = os.path.join(self.data_dir, image_name)
image = Image.open(image_name).convert('RGB')
if self.transform is not None:
image = self.transform(image)
return image, label
def __len__(self):
return len(self.image_file)
构建好Dataset后,就可以使用DataLoader来按批次读入数据了,实现代码如下:
from torch.utils.data import DataLoader
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=4, shuffle=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=batch_size, num_workers=4, shuffle=False)
其中:
batch_size:样本是按“批”读入的,batch_size就是每次读入的样本数
num_workers:有多少个进程用于读取数据
shuffle:是否将读入的数据打乱
drop_last:对于样本最后一部分没有达到批次数的样本,使其不再参与训练
这里可以看一下我们的加载的数据。PyTorch中的DataLoader的读取可以使用next和iter来完成
import matplotlib.pyplot as plt
images, labels = next(iter(val_loader))
print(images.shape)
plt.imshow(images[0].transpose(1,2,0))
plt.show()
torch.nn
Module 类是 nn 模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承 Module 类构造多层感知机。这里定义的 MLP 类重载了 Module 类的 init 函数和 forward 函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。
import torch
from torch import nn
class MLP(nn.Module):
# 声明带有模型参数的层,这里声明了两个全连接层
def __init__(self, **kwargs):
# 调用MLP父类Block的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数
super(MLP, self).__init__(**kwargs)
self.hidden = nn.Linear(784, 256)
self.act = nn.ReLU()
self.output = nn.Linear(256,10)
# 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
def forward(self, x):
o = self.act(self.hidden(x))
return self.output(o)
以上的 MLP 类中须定义反向传播函数。系统将通过求梯度自动生成反向传播所需的 backward 函数。
我们可以实例化 MLP 类得到模型变量 net 。下述的代码初始化 net 并传入输入数据 X 做一次前向计算。其中, net(X) 会调用 MLP 继承自 Module 类的 call 函数,这个函数将调用 MLP 类定义的forward 函数来完成前向计算。
X = torch.rand(2,784)
net = MLP()
print(net)
'''
net(X)
MLP(
(hidden): Linear(in_features=784, out_features=256, bias=True)
(act): ReLU()
(output): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[ 0.0149, -0.2641, -0.0040, 0.0945, -0.1277, -0.0092, 0.0343, 0.0627,
-0.1742, 0.1866],
[ 0.0738, -0.1409, 0.0790, 0.0597, -0.1572, 0.0479, -0.0519, 0.0211,
-0.1435, 0.1958]], grad_fn=)
'''
注意,这里并没有将 Module 类命名为 Layer (层)或者 Model (模型)之类的名字,这是因为该类是一个可供自由组建的部件。它的子类既可以是一个层(如PyTorch提供的 Linear 类),也可以是一个模型(如这里定义的 MLP 类),或者是模型的一个部分。
深度学习的一个魅力在于神经网络中各式各样的层,例如全连接层、卷积层、池化层与循环层等等。虽然PyTorch提供了大量常用的层,但有时候我们依然希望自定义层。这里我们会介绍如何使用 Module 来自定义层,从而可以被反复调用。
不含模型参数的层
我们先介绍如何定义一个不含模型参数的自定义层。下⾯构造的 MyLayer 类通过继承 Module 类自定义了一个将输入减掉均值后输出的层,并将层的计算定义在了 forward 函数里。这个层里不含模型参数。
import torch
from torch import nn
class MyLayer(nn.Module):
def __init__(self, **kwargs):
super(MyLayer, self).__init__(**kwargs)
def forward(self, x):
return x - x.mean()
测试,实例化该层,然后做前向计算
layer = MyLayer()
layer(torch.tensor([1, 2, 3, 4, 5], dtype=torch.float))
# tensor([-2., -1., 0., 1., 2.])
含模型参数的层
我们还可以自定义含模型参数的自定义层。其中的模型参数可以通过训练学出。
Parameter 类其实是 Tensor 的子类,如果一 个 Tensor 是 Parameter ,那么它会自动被添加到模型的参数列表里。所以在自定义含模型参数的层时,我们应该将参数定义成 Parameter ,除了直接定义成 Parameter 类外,还可以使用 ParameterList 和 ParameterDict 分别定义参数的列表和字典。
class MyListDense(nn.Module):
def __init__(self):
super(MyListDense, self).__init__()
self.params = nn.ParameterList([nn.Parameter(torch.randn(4, 4)) for i in range(3)])
self.params.append(nn.Parameter(torch.randn(4, 1)))
def forward(self, x):
for i in range(len(self.params)):
x = torch.mm(x, self.params[i])
return x
net = MyListDense()
print(net)
class MyDictDense(nn.Module):
def __init__(self):
super(MyDictDense, self).__init__()
self.params = nn.ParameterDict({
'linear1': nn.Parameter(torch.randn(4, 4)),
'linear2': nn.Parameter(torch.randn(4, 1))
})
self.params.update({'linear3': nn.Parameter(torch.randn(4, 2))}) # 新增
def forward(self, x, choice='linear1'):
return torch.mm(x, self.params[choice])
net = MyDictDense()
print(net)
下面给出常见的神经网络的一些层,比如卷积层、池化层,以及较为基础的AlexNet,LeNet等。
二维卷积层
二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏差来得到输出。卷积层的模型参数包括了卷积核和标量偏差。在训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差。
import torch
from torch import nn
# 卷积运算(二维互相关)
def corr2d(X, K):
h, w = K.shape
X, K = X.float(), K.float()
Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
return Y
# 二维卷积层
class Conv2D(nn.Module):
def __init__(self, kernel_size):
super(Conv2D, self).__init__()
self.weight = nn.Parameter(torch.randn(kernel_size))
self.bias = nn.Parameter(torch.randn(1))
def forward(self, x):
return corr2d(x, self.weight) + self.bias
卷积窗口形状为 p×q 的卷积层称为 p×q 卷积层。同样, p×q 卷积或 p×q 卷积核说明卷积核的高和宽分别为 p 和 q。
填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)。
下面的例子里我们创建一个高和宽为3的二维卷积层,然后设输入高和宽两侧的填充数分别为1。给定一个高和宽为8的输入,我们发现输出的高和宽也是8。
import torch
from torch import nn
# 定义一个函数来计算卷积层。它对输入和输出做相应的升维和降维
import torch
from torch import nn
# 定义一个函数来计算卷积层。它对输入和输出做相应的升维和降维
def comp_conv2d(conv2d, X):
# (1, 1)代表批量大小和通道数
X = X.view((1, 1) + X.shape)
Y = conv2d(X)
return Y.view(Y.shape[2:]) # 排除不关心的前两维:批量和通道
# 注意这里是两侧分别填充1⾏或列,所以在两侧一共填充2⾏或列
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3,padding=1)
X = torch.rand(8, 8)
comp_conv2d(conv2d, X).shape
# torch.Size([8, 8])
当卷积核的高和宽不同时,我们也可以通过设置高和宽上不同的填充数使输出和输入具有相同的高和宽。
# 使用高为5、宽为3的卷积核。在⾼和宽两侧的填充数分别为2和1
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
torch.Size([8, 8])
在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下 的顺序,依次在输入数组上滑动。我们将每次滑动的行数和列数称为步幅(stride)。
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape
torch.Size([2, 2])
填充可以增加输出的高和宽。这常用来使输出与输入具有相同的高和宽。
步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的 ( 为大于1的整数)。
池化层
池化层每次对输入数据的一个固定形状窗口(也称池化窗口)中的元素计算输出。不同于卷积层里计算输入和核的互相关性,池化层直接计算池化窗口内元素的最大值或者平均值。该运算也分别叫做最大池化或平均池化。在二维最大池化中,池化窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当池化窗口滑动到某个位置时,窗口中的输入子数组的最大值即输出数组中相应位置的元素。
下面把池化层的前向计算实现在pool2d
函数里。
import torch
from torch import nn
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype=torch.float)
pool2d(X, (2, 2)) # tensor([[4., 5.],
# [7., 8.]])
pool2d(X, (2, 2), 'avg') # tensor([[2., 3.],
# [5., 6.]])
我们可以使用torch.nn
包来构建神经网络。我们已经介绍了autograd
包,nn
包则依赖于autograd
包来定义模型并对它们求导。一个nn.Module
包含各个层和一个forward(input)
方法,该方法返回output
。
这是一个简单的前馈神经网络 (feed-forward network)(LeNet)。它接受一个输入,然后将它送入下一层,一层接一层的传递,最后给出输出。
一个神经网络的典型训练过程如下:
定义包含一些可学习参数(或者叫权重)的神经网络
在输入数据集上迭代
通过网络处理输入
计算 loss (输出和正确答案的距离)
将梯度反向传播给网络的参数
更新网络的权重,一般使用一个简单的规则:weight = weight - learning_rate * gradient
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 输入图像channel:1;输出channel:6;5x5卷积核
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# 2x2 Max pooling
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# 如果是方阵,则可以只使用一个数字进行定义
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # 除去批处理维度的其他所有维度
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
'''
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
'''
我们只需要定义 forward
函数,backward
函数会在使用autograd
时自动定义,backward
函数用来计算导数。我们可以在 forward
函数中使用任何针对张量的操作和计算。
一个模型的可学习参数可以通过net.parameters()
返回
params = list(net.parameters())
print(len(params)) # 10
print(params[0].size()) # conv1的权重,torch.Size([6, 1, 5, 5])
让我们尝试一个随机的 32x32 的输入。注意:这个网络 (LeNet)的期待输入是 32x32 的张量。如果使用 MNIST 数据集来训练这个网络,要把图片大小重新调整到 32x32。
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
清零所有参数的梯度缓存,然后进行随机梯度的反向传播:
net.zero_grad()
out.backward(torch.randn(1, 10))
注意:torch.nn
只支持小批量处理 (mini-batches)。整个 torch.nn
包只支持小批量样本的输入,不支持单个样本的输入。比如,nn.Conv2d
接受一个4维的张量,即nSamples x nChannels x Height x Width
如果是一个单独的样本,只需要使用input.unsqueeze(0)
来添加一个“假的”批大小维度。
torch.Tensor
- 一个多维数组,支持诸如backward()
等的自动求导操作,同时也保存了张量的梯度。
nn.Module
- 神经网络模块。是一种方便封装参数的方式,具有将参数移动到GPU、导出、加载等功能。
nn.Parameter
- 张量的一种,当它作为一个属性分配给一个Module
时,它会被自动注册为一个参数。
autograd.Function
- 实现了自动求导前向和反向传播的定义,每个Tensor
至少创建一个Function
节点,该节点连接到创建Tensor
的函数并对其历史进行编码。
下面再介绍一个比较基础的案例AlexNet
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
nn.ReLU(),
nn.MaxPool2d(3, 2), # kernel_size, stride
# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
nn.Conv2d(96, 256, 5, 1, 2),
nn.ReLU(),
nn.MaxPool2d(3, 2),
# 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
# 前两个卷积层后不使用池化层来减小输入的高和宽
nn.Conv2d(256, 384, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(384, 384, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(384, 256, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(3, 2)
)
# 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
self.fc = nn.Sequential(
nn.Linear(256*5*5, 4096),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(0.5),
# 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
nn.Linear(4096, 10),
)
def forward(self, img):
feature = self.conv(img)
output = self.fc(feature.view(img.shape[0], -1))
return output
net = AlexNet()
print(net)
'''
AlexNet(
(conv): Sequential(
(0): Conv2d(1, 96, kernel_size=(11, 11), stride=(4, 4))
(1): ReLU()
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU()
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU()
(8): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU()
(10): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU()
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(fc): Sequential(
(0): Linear(in_features=6400, out_features=4096, bias=True)
(1): ReLU()
(2): Dropout(p=0.5)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU()
(5): Dropout(p=0.5)
(6): Linear(in_features=4096, out_features=10, bias=True)
)
)
'''
深入浅出PyTorch — 深入浅出PyTorch