吴恩达机器学习笔记-01

2022/6/2 ~ 2022/6/15

文章目录

  • 一、单变量线性回归
    • 1.1 模型表示
    • 1.2 代价函数
    • 1.3 梯度下降
    • 1.4 梯度下降的线性回归
  • 二、 多变量线性回归
    • 2.1 多维特征
    • 2.2 多变量梯度下降
    • 2.3 梯度下降法实践1-特征缩放
    • 2.4 梯度下降法实践2-学习率
    • 2.5 特征和多项式回归
    • 2.6 正规方程
  • 三、逻辑回归(Logistic Regression)
    • 3.1 分类问题
    • 3.2 假说表示
    • 3.3 判定边界
    • 3.4 代价函数
    • 3.5 简化的代价函数和梯度下降
    • 3.6 多类别分类:一对多
  • 四、正则化(Regularization)
    • 4.1 过拟合问题
    • 4.2 代价函数
    • 4.3 正则化线性回归
    • 4.4 正则化的逻辑回归模型


一、单变量线性回归

1.1 模型表示

以房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:吴恩达机器学习笔记-01_第1张图片用来描述这个回归问题的标记如下:
m m m 代表训练集中实例的数量
x x x 代表特征/输入变量
y y y 代表目标变量/输出变量
( x , y ) \left( x,y \right) (x,y) 代表训练集中的实例
( x ( i ) , y ( i ) ) ({{x}^{(i)}},{{y}^{(i)}}) (x(i),y(i)) 代表第 i i i 个观察实例
h h h 代表学习算法的解决方案或函数也称为假设(hypothesis

吴恩达机器学习笔记-01_第2张图片采用监督学习算法的工作方式,将训练集数据输入到学习算法中,经过训练输出一个函数,通常用小写 h h h 表示。 h h h 代表hypothesis(假设), h h h表示一个函数,输入是房屋尺寸大小, h h h 根据输入的 x x x值来得出 y y y 值, y y y 值对应房子的价格。 因此, h h h 是一个从 x x x y y y 的函数映射。

因而,要解决房价预测问题,实际上是要将训练集“喂”给我们的学习算法,进而学习得到一个假设 h h h,然后将要预测的房屋的尺寸作为输入变量输入给 h h h,预测出该房屋的交易价格作为输出变量输出为结果。那么,对于房价预测问题,关键在于如何表示 h h h

一种可能的表达方式为: h θ ( x ) = θ 0 + θ 1 x h_\theta \left( x \right)=\theta_{0} + \theta_{1}x hθ(x)=θ0+θ1x,因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题。

1.2 代价函数

接下来要做的便是为函数模型选择合适的参数parameters θ 0 \theta_{0} θ0 θ 1 \theta_{1} θ1,在房价问题这个例子中便是直线的斜率和在 y y y 轴上的截距。

参数的选择决定了我们得到的线性函数相对于训练集的准确程度,模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指)就是建模误差modeling error)。
吴恩达机器学习笔记-01_第3张图片
我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价函数 J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J \left( \theta_0, \theta_1 \right) = \frac{1}{2m}\sum\limits_{i=1}^m \left( h_{\theta}(x^{(i)})-y^{(i)} \right)^{2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2最小。
吴恩达机器学习笔记-01_第4张图片
根据代价函数可以绘制出一个三维图像,三个坐标分别为 θ 0 \theta_{0} θ0 θ 1 \theta_{1} θ1 J ( θ 0 , θ 1 ) J(\theta_{0}, \theta_{1}) J(θ0,θ1)吴恩达机器学习笔记-01_第5张图片
则可以看出在三维空间中存在一个使得 J ( θ 0 , θ 1 ) J(\theta_{0}, \theta_{1}) J(θ0,θ1)最小的点。

该代价函数也被称作平方误差代价函数。我们之所以要求出误差的平方和,是因为平方误差代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。还有其他的代价函数也能很好地发挥作用,但是平方误差代价函数是解决回归问题最常用的手段。

1.3 梯度下降

当面对更复杂、更高维度、更多参数的情况下,我们很难画出对应的图像,因此无法直观地看出最小值点,因此我们真正需要的是编写程序来找出这些最小化代价函数的 θ 0 \theta_{0} θ0 θ 1 \theta_{1} θ1的值。梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数 J ( θ 0 , θ 1 ) J(\theta_{0}, \theta_{1}) J(θ0,θ1) 的最小值。
吴恩达机器学习笔记-01_第6张图片
想象一下你正站立在山的这一点上,在梯度下降算法中,我们要做的就是旋转360度,看看我们的周围,并问自己要在某个方向上,用小碎步尽快下山。这些小碎步需要朝什么方向?如果我们站在山坡上的这一点,你看一下周围,你会发现最佳的下山方向,你再看看周围,然后再一次想想,我应该从什么方向迈着小碎步下山?然后你按照自己的判断又迈出一步,重复上面的步骤,从这个新的点,你环顾四周,并决定从什么方向将会最快下山,然后又迈进了一小步,并依此类推,直到你接近局部最低点的位置。

批量梯度下降(batch gradient descent)算法的数学公式为:
吴恩达机器学习笔记-01_第7张图片其中 a a a是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大,在批量梯度下降算法中,每一次都同时让所有的参数减去学习速率乘以代价函数的导数。在梯度下降算法中,这是正确实现同时更新的方法。

我们要进入这个微分项的细节之中。如果你熟悉偏导数和导数,这其实就是这个微分项:
α ∂ ∂ θ 0 J ( θ 0 , θ 1 ) \alpha \frac{\partial }{\partial {{\theta }_{0}}}J({{\theta }_{0}},{{\theta }_{1}}) αθ0J(θ0,θ1) α ∂ ∂ θ 1 J ( θ 0 , θ 1 ) \alpha \frac{\partial }{\partial {{\theta }_{1}}}J({{\theta }_{0}},{{\theta }_{1}}) αθ1J(θ0,θ1)

我们更深入研究一下,更直观地感受一下这个算法是做什么的,以及梯度下降算法的更新过程有什么意义。梯度下降算法如下:

θ j : = θ j − α ∂ ∂ θ j J ( θ ) {\theta_{j}}:={\theta_{j}}-\alpha \frac{\partial }{\partial {\theta_{j}}}J\left(\theta \right) θj:=θjαθjJ(θ)

描述:对 θ \theta θ赋值,使得 J ( θ ) J\left( \theta \right) J(θ)按梯度下降最快方向进行,一直迭代下去,最终得到局部最小值。其中 a a a是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大。
吴恩达机器学习笔记-01_第8张图片

对于这个问题,求导的目的,基本上可以说取这个红点的切线,就是这样一条红色的直线,这条直线的斜率正好是这个三角形的高度除以这个水平长度,现在,这条线有一个正斜率,也就是说它有正导数,因此,我得到的新的 θ 1 {\theta_{1}} θ1 θ 1 {\theta_{1}} θ1更新后等于 θ 1 {\theta_{1}} θ1减去一个正数乘以 a a a

这就是我梯度下降法的更新规则: θ j : = θ j − α ∂ ∂ θ j J ( θ ) {\theta_{j}}:={\theta_{j}}-\alpha \frac{\partial }{\partial {\theta_{j}}}J\left( \theta \right) θj:=θjαθjJ(θ)

让我们来看看如果 a a a太小或 a a a太大会出现什么情况:

如果 a a a太小了,即我的学习速率太小,结果就是只能一点点地挪动,去努力接近最低点,这样就需要很多步才能到达最低点,所以如果 a a a太小的话,可能会很慢,因为它会一点点挪动,它会需要很多步才能到达全局最低点。

如果 a a a太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果 a a a太大,它会导致无法收敛,甚至发散。

假设你将 θ 1 {\theta_{1}} θ1初始化在局部最低点,它已经在一个局部的最优处或局部最低点。结果是局部最优点的导数将等于零,它使得 θ 1 {\theta_{1}} θ1不再改变,因此,如果你的参数已经处于局部最低点,那么梯度下降法更新其实什么都没做,它不会改变参数的值。这也解释了为什么即使学习速率 a a a保持不变时,梯度下降也可以收敛到局部最低点。

我们来看一个例子,这是代价函数 J ( θ ) J\left( \theta \right) J(θ)
吴恩达机器学习笔记-01_第9张图片
我想找到它的最小值,首先初始化梯度下降算法,假设紫色点为初始化点,更新一步梯度下降,由于该点的斜率较大,因此步长也较大,也许它会更新到绿色点。接着再更新一步,会函数导数,即斜率,是没那么陡的,更新到红色点。随着我接近最低点,导数越来越接近零,步长也越来越小, θ 1 {\theta_{1}} θ1更新的幅度就会更小。所以随着梯度下降法的运行,移动的幅度会自动变得越来越小,直到最终收敛到局部极小值。

回顾一下,在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。所以实际上没有必要再另外减小 a a a

1.4 梯度下降的线性回归

我们要将梯度下降和代价函数结合,并将其应用于具体的拟合直线的线性回归算法里。

梯度下降算法和线性回归算法比较如图:
吴恩达机器学习笔记-01_第10张图片对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即:

∂ ∂ θ j J ( θ 0 , θ 1 ) = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \frac{\partial }{\partial {{\theta }_{j}}}J({{\theta }_{0}},{{\theta }_{1}})=\frac{\partial }{\partial {{\theta }_{j}}}\frac{1}{2m}{{\sum\limits_{i=1}^{m}{\left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)}}^{2}} θjJ(θ0,θ1)=θj2m1i=1m(hθ(x(i))y(i))2

j = 0 j=0 j=0 时: ∂ ∂ θ 0 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \frac{\partial }{\partial {{\theta }_{0}}}J({{\theta }_{0}},{{\theta }_{1}})=\frac{1}{m}{{\sum\limits_{i=1}^{m}{\left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)}}} θ0J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))

j = 1 j=1 j=1 时: ∂ ∂ θ 1 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) ) \frac{\partial }{\partial {{\theta }_{1}}}J({{\theta }_{0}},{{\theta }_{1}})=\frac{1}{m}\sum\limits_{i=1}^{m}{\left( \left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)\cdot {{x}^{(i)}} \right)} θ1J(θ0,θ1)=m1i=1m((hθ(x(i))y(i))x(i))

则算法改写成:

Repeat {

θ 0 : = θ 0 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) {\theta_{0}}:={\theta_{0}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{ \left({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)} θ0:=θ0am1i=1m(hθ(x(i))y(i))

θ 1 : = θ 1 − a 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) ) {\theta_{1}}:={\theta_{1}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{\left( \left({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)\cdot {{x}^{(i)}} \right)} θ1:=θ1am1i=1m((hθ(x(i))y(i))x(i))

}

我们刚刚使用的算法,有时也称为批量梯度下降。实际上,在机器学习中,通常不太会给算法起名字,但这个名字”批量梯度下降”,指的是在梯度下降的每一步中,我们都用到了所有的训练样本,在梯度下降中,在计算微分求导项时,我们需要进行求和运算,所以,在每一个单独的梯度下降中,我们最终都要计算这样一个东西,这个项需要对所有 m m m个训练样本求和。因此,批量梯度下降法这个名字说明了我们需要考虑所有这一"批"训练样本,而事实上,有时也有其他类型的梯度下降法,不是这种"批量"型的,不考虑整个的训练集,而是每次只关注训练集中的一些小的子集。在后面的课程中,也将介绍这些方法。

但就目前而言,应用刚刚学到的算法,并且能把它应用到线性回归中,这就是用于线性回归的梯度下降法。

正规方程(normal equations)的方法,也能解出代价函数 J J J的最小值,该方法相较于梯度下降法不需要多次下降求解。实际上在数据量较大的情况下,梯度下降法比正规方程要更适用一些。

二、 多变量线性回归

2.1 多维特征

目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为 ( x 1 , x 2 , . . . , x n ) \left( {x_{1}},{x_{2}},...,{x_{n}} \right) (x1,x2,...,xn)
吴恩达机器学习笔记-01_第11张图片增添更多特征后,需要引入一系列新的注释:

n n n 代表特征的数量

x ( i ) {x^{\left( i \right)}} x(i)代表第 i i i 个训练实例,是特征矩阵中的第 i i i行,是一个向量vector)。

比方说,上图的

x ( 2 ) = [ 1416   3   2   40 ] {x}^{(2)}\text{=}\begin{bmatrix} 1416\\\ 3\\\ 2\\\ 40 \end{bmatrix} x(2)=1416 3 2 40

x j ( i ) {x}_{j}^{\left( i \right)} xj(i)代表特征矩阵中第 i i i 行的第 j j j 个特征,也就是第 i i i 个训练实例的第 j j j 个特征。

如上图的 x 2 ( 2 ) = 3 , x 3 ( 2 ) = 2 x_{2}^{\left( 2 \right)}=3,x_{3}^{\left( 2 \right)}=2 x2(2)=3,x3(2)=2

支持多变量的假设 h h h 表示为: h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θ0+θ1x1+θ2x2+...+θnxn

这个公式中有 n + 1 n+1 n+1个参数和 n n n个变量,为了使得公式能够简化一些,引入 x 0 = 1 x_{0}=1 x0=1,则公式转化为: h θ ( x ) = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta} \left( x \right)={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn

此时模型中的参数是一个 n + 1 n+1 n+1维的向量,任何一个训练实例也都是 n + 1 n+1 n+1维的向量,特征矩阵 X X X的维度是 m ∗ ( n + 1 ) m*(n+1) m(n+1)。 因此公式可以简化为: h θ ( x ) = θ T X h_{\theta} \left( x \right)={\theta^{T}}X hθ(x)=θTX,其中上标 T T T代表矩阵转置。

2.2 多变量梯度下降

与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即: J ( θ 0 , θ 1 . . . θ n ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( {\theta_{0}},{\theta_{1}}...{\theta_{n}} \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( h_{\theta} \left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}} J(θ0,θ1...θn)=2m1i=1m(hθ(x(i))y(i))2

其中: h θ ( x ) = θ T X = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta}\left( x \right)=\theta^{T}X={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0+θ1x1+θ2x2+...+θnxn

我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。
多变量线性回归的批量梯度下降算法为:吴恩达机器学习笔记-01_第12张图片吴恩达机器学习笔记-01_第13张图片求导后得到:吴恩达机器学习笔记-01_第14张图片 n > = 1 n>=1 n>=1时,
θ 0 : = θ 0 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) {{\theta }_{0}}:={{\theta }_{0}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{0}^{(i)} θ0:=θ0am1i=1m(hθ(x(i))y(i))x0(i)

θ 1 : = θ 1 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 1 ( i ) {{\theta }_{1}}:={{\theta }_{1}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{1}^{(i)} θ1:=θ1am1i=1m(hθ(x(i))y(i))x1(i)

θ 2 : = θ 2 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 2 ( i ) {{\theta }_{2}}:={{\theta }_{2}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{2}^{(i)} θ2:=θ2am1i=1m(hθ(x(i))y(i))x2(i)

我们开始随机选择一系列的参数值,计算所有的预测结果后,再给所有的参数一个新的值,如此循环直到收敛。

代码示例:

计算代价函数
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {h_{\theta}}\left( {x^{(i)}} \right)-{y^{(i)}} \right)}^{2}}} J(θ)=2m1i=1m(hθ(x(i))y(i))2
其中: h θ ( x ) = θ T X = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n {h_{\theta}}\left( x \right)={\theta^{T}}X={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0x0+θ1x1+θ2x2+...+θnxn

Pyhthon代码

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))

2.3 梯度下降法实践1-特征缩放

在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。

以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。
吴恩达机器学习笔记-01_第15张图片解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如图:吴恩达机器学习笔记-01_第16张图片最简单的方法是令: x n = x n − μ n s n {{x}_{n}}=\frac{{{x}_{n}}-{{\mu}_{n}}}{{{s}_{n}}} xn=snxnμn,其中 μ n {\mu_{n}} μn是平均值, s n {s_{n}} sn是标准差。

2.4 梯度下降法实践2-学习率

梯度下降算法收敛所需要的迭代次数根据模型的不同而不同,我们不能提前预知,我们可以绘制迭代次数和代价函数的图表来观测算法在何时趋于收敛。吴恩达机器学习笔记-01_第17张图片也有一些自动测试是否收敛的方法,例如将代价函数的变化值与某个阀值(例如0.001)进行比较,但通常看上面这样的图表更好。

梯度下降算法的每次迭代受到学习率的影响,如果学习率 a a a过小,则达到收敛所需的迭代次数会非常高;如果学习率 a a a过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试些学习率:

α = 0.01 , 0.03 , 0.1 , 0.3 , 1 , 3 , 10 \alpha=0.01,0.03,0.1,0.3,1,3,10 α=0.010.030.10.31310

2.5 特征和多项式回归

如房价预测问题,吴恩达机器学习笔记-01_第18张图片
h θ ( x ) = θ 0 + θ 1 × f r o n t a g e + θ 2 × d e p t h h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}\times{frontage}+{\theta_{2}}\times{depth} hθ(x)=θ0+θ1×frontage+θ2×depth

x 1 = f r o n t a g e {x_{1}}=frontage x1=frontage(临街宽度), x 2 = d e p t h {x_{2}}=depth x2=depth(纵向深度), x = f r o n t a g e ∗ d e p t h = a r e a x=frontage*depth=area x=frontagedepth=area(面积),则: h θ ( x ) = θ 0 + θ 1 x {h_{\theta}}\left( x \right)={\theta_{0}}+{\theta_{1}}x hθ(x)=θ0+θ1x
线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方模型: h θ ( x ) = θ 0 + θ 1 x + θ 2 x 2 h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x}+{\theta_{2}}{x^2} hθ(x)=θ0+θ1x+θ2x2
或者三次方模型: h θ ( x ) = θ 0 + θ 1 x + θ 2 x 2 + θ 3 x 3 h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x}+{\theta_{2}}{x^2}+{\theta_{3}}{x^3} hθ(x)=θ0+θ1x+θ2x2+θ3x3 吴恩达机器学习笔记-01_第19张图片通常我们需要先观察数据然后再决定准备尝试怎样的模型。 另外,我们可以令:

x 1 = x , x 2 = x 2 , x 3 = x 3 {x_{1}}=x,{{x}_{2}}=x^{2},{{x}_{3}}=x^{3} x1=x,x2=x2,x3=x3,从而将三次方模型转化为线性回归模型。

根据函数图形特性,我们还可以使:

h θ ( x ) = θ 0 + θ 1 ( s i z e ) + θ 2 ( s i z e ) 2 {{{h}}_{\theta}}(x)={{\theta }_{0}}\text{+}{{\theta }_{1}}(size)+{{\theta}_{2}}{{(size)}^{2}} hθ(x)=θ0+θ1(size)+θ2(size)2

或者:

h θ ( x ) = θ 0 + θ 1 ( s i z e ) + θ 2 s i z e {{{h}}_{\theta}}(x)={{\theta }_{0}}\text{+}{{\theta }_{1}}(size)+{{\theta }_{2}}\sqrt{size} hθ(x)=θ0+θ1(size)+θ2size

注:如果我们采用多项式回归模型,在运行梯度下降算法前,特征缩放非常有必要。

2.6 正规方程

到目前为止,我们都在使用梯度下降算法,但是对于某些线性回归问题,正规方程方法是更好的解决方案。如:吴恩达机器学习笔记-01_第20张图片
正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: ∂ ∂ θ j J ( θ j ) = 0 \frac{\partial}{\partial{\theta_{j}}}J\left( {\theta_{j}} \right)=0 θjJ(θj)=0
假设我们的训练集特征矩阵为 X X X(包含了 x 0 = 1 {{x}_{0}}=1 x0=1)并且我们的训练集结果为向量 y y y,则利用正规方程解出向量 θ = ( X T X ) − 1 X T y \theta ={{\left( {X^T}X \right)}^{-1}}{X^{T}}y θ=(XTX)1XTy
上标T代表矩阵转置,上标-1 代表矩阵的逆。设矩阵 A = X T X A={X^{T}}X A=XTX,则: ( X T X ) − 1 = A − 1 {{\left( {X^T}X \right)}^{-1}}={A^{-1}} (XTX)1=A1
以下表示数据为例:吴恩达机器学习笔记-01_第21张图片即:吴恩达机器学习笔记-01_第22张图片运用正规方程方法求解参数:吴恩达机器学习笔记-01_第23张图片注:对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是不能用的。

梯度下降与正规方程的比较:

梯度下降 正规方程
需要选择学习率 α \alpha α 不需要
需要多次迭代 一次运算得出
当特征数量 n n n大时也能较好适用 需要计算 ( X T X ) − 1 {{\left( {{X}^{T}}X \right)}^{-1}} (XTX)1 如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为 O ( n 3 ) O\left( {{n}^{3}} \right) O(n3),通常来说当 n n n小于10000 时还是可以接受的
适用于各种类型的模型 只适用于线性模型,不适合逻辑回归模型等其他模型

总结一下,只要特征变量的数目并不大,正规方程是一个很好的计算参数$\theta $的替代方法。具体地说,只要特征变量数量小于一万,通常使用标准方程法,而不使用梯度下降法。

随着学习算法越来越复杂,例如分类算法,像逻辑回归算法,并不能使用正规方程法。对于那些更复杂的学习算法,我们将不得不仍然使用梯度下降法。因此,梯度下降法是一个非常有用的算法,可以用在有大量特征变量的线性回归问题。但对于特定的线性回归模型,正规方程法是一个比梯度下降法更快的替代算法。所以,具体问题要具体分析。

正规方程的python实现:

import numpy as np
    
 def normalEqn(X, y):
    
   theta = np.linalg.inv(X.T@X)@X.T@y #X.T@X等价于X.T.dot(X)
    
   return theta

三、逻辑回归(Logistic Regression)

3.1 分类问题

逻辑回归 (Logistic Regression) 算法,是目前分类问题中最流行使用最广泛的一种学习算法。

在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈;之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的。吴恩达机器学习笔记-01_第24张图片
先从二元分类问题入手:
我们将因变量(dependent variable)可能属于的两个类分别称为负向类(negative class)和正向类(positive class),则因变量 y ∈ ( 0 , 1 ) y\in { (0,1)} y(0,1) ,其中 0 表示负向类,1 表示正向类。吴恩达机器学习笔记-01_第25张图片吴恩达机器学习笔记-01_第26张图片
如果我们要用线性回归算法来解决一个分类问题,对于分类, y y y 取值为 0 或者1,但如果你使用的是线性回归,那么假设函数的输出值可能远大于 1,或者远小于0,即所有训练样本的标签 y y y 都等于 0 或 1。尽管我们知道标签应该取值0 或者1,但是如果算法得到的值远大于1或者远小于0的话,就会感觉很奇怪。所以我们在接下来的要研究的算法就叫做逻辑回归算法,这个算法的性质是:它的输出值永远在0到 1 之间。

顺便说一下,逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了“回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法,它适用于标签 y y y 取值离散的情况,如:1 0 0 1。

3.2 假说表示

在分类问题中,要用什么样的函数来表示我们的假设?上一节提到,希望分类器的输出值在0和1之间,因此,我们希望想出一个满足某个性质的假设函数,这个性质是它的预测值要在0和1之间。

回顾在一开始提到的乳腺癌分类问题,我们可以用线性回归的方法求出适合数据的一条直线:吴恩达机器学习笔记-01_第27张图片根据线性回归模型我们只能预测连续的值,然而对于分类问题,我们需要输出0或1,我们可以预测:

h θ ( x ) > = 0.5 {h_\theta}\left( x \right)>=0.5 hθ(x)>=0.5时,预测 y = 1 y=1 y=1

h θ ( x ) < 0.5 {h_\theta}\left( x \right)<0.5 hθ(x)<0.5时,预测 y = 0 y=0 y=0

对于上图所示的数据,这样的一个线性模型似乎能很好地完成分类任务。假使我们又观测到一个非常大尺寸的恶性肿瘤,将其作为实例加入到我们的训练集中来,这将使得我们获得一条新的直线。吴恩达机器学习笔记-01_第28张图片这时,再使用0.5作为阀值来预测肿瘤是良性还是恶性便不合适了。可以看出,线性回归模型,因为其预测的值可以超越[0,1]的范围,并不适合解决这样的问题。

我们引入一个新的模型,逻辑回归,该模型的输出变量范围始终在0和1之间。
逻辑回归模型的假设是: h θ ( x ) = g ( θ T X ) h_\theta \left( x \right)=g\left(\theta^{T}X \right) hθ(x)=g(θTX)
其中:
X X X 代表特征向量
g g g 代表逻辑函数(logistic function)是一个常用的逻辑函数为S形函数(Sigmoid function),公式为: g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1

Python代码实现:

import numpy as np

def sigmoid(z):
	return  1/(1 + np.exp(-z))

该函数的图像为:吴恩达机器学习笔记-01_第29张图片合起来,我们得到逻辑回归模型的假设:

h θ ( x ) = 1 1 + e − ( θ T X ) h_\theta \left( x \right)=\frac{1}{1+{{e}^{-{\left(\theta^{T}X \right)}}}} hθ(x)=1+e(θTX)1

对模型的理解:

h θ ( x ) h_\theta \left( x \right) hθ(x)的作用是,对于给定的输入变量,根据选择的参数计算输出变量=1的可能性(estimated probablity)即 h θ ( x ) = P ( y = 1 ∣ x ; θ ) h_\theta \left( x \right)=P\left( y=1|x;\theta \right) hθ(x)=P(y=1x;θ)
例如,如果对于给定的 x x x,通过已经确定的参数计算得出 h θ ( x ) = 0.7 h_\theta \left( x \right)=0.7 hθ(x)=0.7,则表示有70%的几率 y y y为正向类,相应地 y y y为负向类的几率为1-0.7=0.3。

3.3 判定边界

决策边界(decision boundary)的概念能更好地帮助我们理解逻辑回归的假设函数在计算什么。吴恩达机器学习笔记-01_第30张图片在逻辑回归中,我们预测:

h θ ( x ) > = 0.5 {h_\theta}\left( x \right)>=0.5 hθ(x)>=0.5时,预测 y = 1 y=1 y=1

h θ ( x ) < 0.5 {h_\theta}\left( x \right)<0.5 hθ(x)<0.5时,预测 y = 0 y=0 y=0

根据上面绘制出的 S 形函数图像,我们知道当

z = 0 z=0 z=0 g ( z ) = 0.5 g(z)=0.5 g(z)=0.5

z > 0 z>0 z>0 g ( z ) > 0.5 g(z)>0.5 g(z)>0.5

z < 0 z<0 z<0 g ( z ) < 0.5 g(z)<0.5 g(z)<0.5

z = θ T x z={\theta^{T}}x z=θTx ,即:
θ T x > = 0 {\theta^{T}}x>=0 θTx>=0 时,预测 y = 1 y=1 y=1
θ T x < 0 {\theta^{T}}x<0 θTx<0 时,预测 y = 0 y=0 y=0

现在假设我们有一个模型:吴恩达机器学习笔记-01_第31张图片并且参数 θ \theta θ 是向量[-3 1 1]。 则当 − 3 + x 1 + x 2 ≥ 0 -3+{x_1}+{x_2} \geq 0 3+x1+x20,即 x 1 + x 2 ≥ 3 {x_1}+{x_2} \geq 3 x1+x23时,模型将预测 y = 1 y=1 y=1
我们可以绘制直线 x 1 + x 2 = 3 {x_1}+{x_2} = 3 x1+x2=3,这条线便是我们模型的分界线,将预测为1的区域和预测为 0的区域分隔开。吴恩达机器学习笔记-01_第32张图片假使我们的数据呈现这样的分布情况,怎样的模型才能适合呢?吴恩达机器学习笔记-01_第33张图片因为需要用曲线才能分隔 y = 0 y=0 y=0 的区域和 y = 1 y=1 y=1 的区域,我们需要二次方特征: h θ ( x ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 2 + θ 4 x 2 2 ) {h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}+{\theta_{3}}x_{1}^{2}+{\theta_{4}}x_{2}^{2} \right) hθ(x)=g(θ0+θ1x1+θ2x2+θ3x12+θ4x22)是[-1 0 0 1 1],则我们得到的判定边界恰好是圆点在原点且半径为1的圆形。

我们可以用非常复杂的模型来适应非常复杂形状的判定边界。

3.4 代价函数

接下来将学习如何拟合逻辑回归模型的参数 θ \theta θ。具体来说,要定义用来拟合参数的优化目标或者叫代价函数,这便是监督学习问题中的逻辑回归模型的拟合问题。吴恩达机器学习笔记-01_第34张图片
对于线性回归模型,定义的代价函数是所有测试集误差的平方和。理论上来说,我们也可以对逻辑回归模型沿用这个定义,但是问题在于,当把 h θ ( x ) = 1 1 + e − θ T x {h_\theta}\left( x \right)=\frac{1}{1+{e^{-\theta^{T}x}}} hθ(x)=1+eθTx1带入到这样定义的代价函数中时,得到的代价函数将是一个非凸函数(non-convexfunction)。
吴恩达机器学习笔记-01_第35张图片
这意味着该代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。

线性回归的代价函数为: J ( θ ) = 1 m ∑ i = 1 m 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{1}{2}{{\left( {h_\theta}\left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}} J(θ)=m1i=1m21(hθ(x(i))y(i))2
我们重新定义逻辑回归的代价函数为: J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x ( i ) ) , y ( i ) ) J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{{Cost}\left( {h_\theta}\left( {x}^{\left( i \right)} \right),{y}^{\left( i \right)} \right)} J(θ)=m1i=1mCost(hθ(x(i)),y(i)),其中在这里插入图片描述 h θ ( x ) {h_\theta}\left( x \right) hθ(x) C o s t ( h θ ( x ) , y ) Cost\left( {h_\theta}\left( x \right),y \right) Cost(hθ(x),y)之间的关系如下图所示:吴恩达机器学习笔记-01_第36张图片这样构建的 C o s t ( h θ ( x ) , y ) Cost\left( {h_\theta}\left( x \right),y \right) Cost(hθ(x),y)函数的特点是:当实际的 y = 1 y=1 y=1 h θ ( x ) {h_\theta}\left( x \right) hθ(x)也为 1 时误差为 0,当 y = 1 y=1 y=1 h θ ( x ) {h_\theta}\left( x \right) hθ(x)不为1时误差随着 h θ ( x ) {h_\theta}\left( x \right) hθ(x)变小而变大;当实际的 y = 0 y=0 y=0 h θ ( x ) {h_\theta}\left( x \right) hθ(x)也为 0 时代价为 0,当 y = 0 y=0 y=0 h θ ( x ) {h_\theta}\left( x \right) hθ(x)不为 0时误差随着 h θ ( x ) {h_\theta}\left( x \right) hθ(x)的变大而变大。
将构建的 C o s t ( h θ ( x ) , y ) Cost\left( {h_\theta}\left( x \right),y \right) Cost(hθ(x),y)简化如下:
C o s t ( h θ ( x ) , y ) = − y × l o g ( h θ ( x ) ) − ( 1 − y ) × l o g ( 1 − h θ ( x ) ) Cost\left( {h_\theta}\left( x \right),y \right)=-y\times log\left( {h_\theta}\left( x \right) \right)-(1-y)\times log\left( 1-{h_\theta}\left( x \right) \right) Cost(hθ(x),y)=y×log(hθ(x))(1y)×log(1hθ(x))
带入代价函数得到:
J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]
即: J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=-\frac{1}{m}\sum\limits_{i=1}^{m}{[{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

Python代码实现:

import numpy as np
    
def cost(theta, X, y):
  theta = np.matrix(theta)
  X = np.matrix(X)
  y = np.matrix(y)
  first = np.multiply(-y, np.log(sigmoid(X* theta.T)))
  second = np.multiply((1 - y), np.log(1 - sigmoid(X* theta.T)))
  return np.sum(first - second) / (len(X))

在得到这样一个代价函数以后,便可以用梯度下降算法来求得能使代价函数最小的参数。算法为:

Repeat {
θ j : = θ j − α ∂ ∂ θ j J ( θ ) \theta_j := \theta_j - \alpha \frac{\partial}{\partial\theta_j} J(\theta) θj:=θjαθjJ(θ)
(simultaneously update all )
}

求导后得到:

Repeat {
θ j : = θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j := \theta_j - \alpha \frac{1}{m}\sum\limits_{i=1}^{m}{{\left( {h_\theta}\left( \mathop{x}^{\left( i \right)} \right)-\mathop{y}^{\left( i \right)} \right)}}\mathop{x}_{j}^{(i)} θj:=θjαm1i=1m(hθ(x(i))y(i))xj(i)
(simultaneously update all )
}

我们定义了单训练样本的代价函数,凸性分析的内容是超出这门课的范围,但是可以证明我们所选的代价值函数会给我们一个凸优化问题。代价函数 J ( θ ) J(\theta) J(θ)会是一个凸函数,并且没有局部最优值。

推导过程:

J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=-\frac{1}{m}\sum\limits_{i=1}^{m}{[{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]
考虑:
h θ ( x ( i ) ) = 1 1 + e − θ T x ( i ) {h_\theta}\left( {{x}^{(i)}} \right)=\frac{1}{1+{{e}^{-{\theta^T}{{x}^{(i)}}}}} hθ(x(i))=1+eθTx(i)1
则:
y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) {{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right) y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))
= y ( i ) log ⁡ ( 1 1 + e − θ T x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − 1 1 + e − θ T x ( i ) ) ={{y}^{(i)}}\log \left( \frac{1}{1+{{e}^{-{\theta^T}{{x}^{(i)}}}}} \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-\frac{1}{1+{{e}^{-{\theta^T}{{x}^{(i)}}}}} \right) =y(i)log(1+eθTx(i)1)+(1y(i))log(11+eθTx(i)1)
= − y ( i ) log ⁡ ( 1 + e − θ T x ( i ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 + e θ T x ( i ) ) =-{{y}^{(i)}}\log \left( 1+{{e}^{-{\theta^T}{{x}^{(i)}}}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{{\theta^T}{{x}^{(i)}}}} \right) =y(i)log(1+eθTx(i))(1y(i))log(1+eθTx(i))

所以:
∂ ∂ θ j J ( θ ) = ∂ ∂ θ j [ − 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( 1 + e − θ T x ( i ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 + e θ T x ( i ) ) ] ] \frac{\partial }{\partial {\theta_{j}}}J\left( \theta \right)=\frac{\partial }{\partial {\theta_{j}}}[-\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( 1+{{e}^{-{\theta^{T}}{{x}^{(i)}}}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{{\theta^{T}}{{x}^{(i)}}}} \right)]}] θjJ(θ)=θj[m1i=1m[y(i)log(1+eθTx(i))(1y(i))log(1+eθTx(i))]]
= − 1 m ∑ i = 1 m [ − y ( i ) − x j ( i ) e − θ T x ( i ) 1 + e − θ T x ( i ) − ( 1 − y ( i ) ) x j ( i ) e θ T x ( i ) 1 + e θ T x ( i ) ] =-\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\frac{-x_{j}^{(i)}{{e}^{-{\theta^{T}}{{x}^{(i)}}}}}{1+{{e}^{-{\theta^{T}}{{x}^{(i)}}}}}-\left( 1-{{y}^{(i)}} \right)\frac{x_j^{(i)}{{e}^{{\theta^T}{{x}^{(i)}}}}}{1+{{e}^{{\theta^T}{{x}^{(i)}}}}}}] =m1i=1m[y(i)1+eθTx(i)xj(i)eθTx(i)(1y(i))1+eθTx(i)xj(i)eθTx(i)]
= − 1 m ∑ i = 1 m y ( i ) x j ( i ) 1 + e θ T x ( i ) − ( 1 − y ( i ) ) x j ( i ) e θ T x ( i ) 1 + e θ T x ( i ) ] =-\frac{1}{m}\sum\limits_{i=1}^{m}{{y}^{(i)}}\frac{x_j^{(i)}}{1+{{e}^{{\theta^T}{{x}^{(i)}}}}}-\left( 1-{{y}^{(i)}} \right)\frac{x_j^{(i)}{{e}^{{\theta^T}{{x}^{(i)}}}}}{1+{{e}^{{\theta^T}{{x}^{(i)}}}}}] =m1i=1my(i)1+eθTx(i)xj(i)(1y(i))1+eθTx(i)xj(i)eθTx(i)]
= − 1 m ∑ i = 1 m y ( i ) x j ( i ) − x j ( i ) e θ T x ( i ) + y ( i ) x j ( i ) e θ T x ( i ) 1 + e θ T x ( i ) =-\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{{{y}^{(i)}}x_j^{(i)}-x_j^{(i)}{{e}^{{\theta^T}{{x}^{(i)}}}}+{{y}^{(i)}}x_j^{(i)}{{e}^{{\theta^T}{{x}^{(i)}}}}}{1+{{e}^{{\theta^T}{{x}^{(i)}}}}}} =m1i=1m1+eθTx(i)y(i)xj(i)xj(i)eθTx(i)+y(i)xj(i)eθTx(i)
= − 1 m ∑ i = 1 m y ( i ) ( 1 + e θ T x ( i ) ) − e θ T x ( i ) 1 + e θ T x ( i ) x j ( i ) =-\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{{{y}^{(i)}}\left( 1\text{+}{{e}^{{\theta^T}{{x}^{(i)}}}} \right)-{{e}^{{\theta^T}{{x}^{(i)}}}}}{1+{{e}^{{\theta^T}{{x}^{(i)}}}}}x_j^{(i)}} =m1i=1m1+eθTx(i)y(i)(1+eθTx(i))eθTx(i)xj(i)
= − 1 m ∑ i = 1 m ( y ( i ) − e θ T x ( i ) 1 + e θ T x ( i ) ) x j ( i ) =-\frac{1}{m}\sum\limits_{i=1}^{m}{({{y}^{(i)}}-\frac{{{e}^{{\theta^T}{{x}^{(i)}}}}}{1+{{e}^{{\theta^T}{{x}^{(i)}}}}})x_j^{(i)}} =m1i=1m(y(i)1+eθTx(i)eθTx(i))xj(i)
= − 1 m ∑ i = 1 m ( y ( i ) − 1 1 + e − θ T x ( i ) ) x j ( i ) =-\frac{1}{m}\sum\limits_{i=1}^{m}{({{y}^{(i)}}-\frac{1}{1+{{e}^{-{\theta^T}{{x}^{(i)}}}}})x_j^{(i)}} =m1i=1m(y(i)1+eθTx(i)1)xj(i)
= − 1 m ∑ i = 1 m [ y ( i ) − h θ ( x ( i ) ) ] x j ( i ) =-\frac{1}{m}\sum\limits_{i=1}^{m}{[{{y}^{(i)}}-{h_\theta}\left( {{x}^{(i)}} \right)]x_j^{(i)}} =m1i=1m[y(i)hθ(x(i))]xj(i)
= 1 m ∑ i = 1 m [ h θ ( x ( i ) ) − y ( i ) ] x j ( i ) =\frac{1}{m}\sum\limits_{i=1}^{m}{[{h_\theta}\left( {{x}^{(i)}} \right)-{{y}^{(i)}}]x_j^{(i)}} =m1i=1m[hθ(x(i))y(i)]xj(i)

注:虽然得到的梯度下降算法表面上看上去与线性回归的梯度下降算法一样,但是这里的 h θ ( x ) = g ( θ T X ) {h_\theta}\left( x \right)=g\left( {\theta^T}X \right) hθ(x)=g(θTX)与线性回归中不同,所以实际上是不一样的。另外,在运行梯度下降算法之前,进行特征缩放依旧是非常必要的。

3.5 简化的代价函数和梯度下降

这一小节中,我们将会找出一种稍微简单一点的方法来写代价函数,来替换我们现在用的方法。同时还要弄清楚如何运用梯度下降法,来拟合出逻辑回归的参数。

这就是逻辑回归的代价函数:
吴恩达机器学习笔记-01_第37张图片
这个式子可以合并成:

C o s t ( h θ ( x ) , y ) = − y × l o g ( h θ ( x ) ) − ( 1 − y ) × l o g ( 1 − h θ ( x ) ) Cost\left( {h_\theta}\left( x \right),y \right)=-y\times log\left( {h_\theta}\left( x \right) \right)-(1-y)\times log\left( 1-{h_\theta}\left( x \right) \right) Cost(hθ(x),y)=y×log(hθ(x))(1y)×log(1hθ(x))

即,逻辑回归的代价函数:

C o s t ( h θ ( x ) , y ) = − y × l o g ( h θ ( x ) ) − ( 1 − y ) × l o g ( 1 − h θ ( x ) ) Cost\left( {h_\theta}\left( x \right),y \right)=-y\times log\left( {h_\theta}\left( x \right) \right)-(1-y)\times log\left( 1-{h_\theta}\left( x \right) \right) Cost(hθ(x),y)=y×log(hθ(x))(1y)×log(1hθ(x))

= − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] =-\frac{1}{m}\sum\limits_{i=1}^{m}{[{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]} =m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

根据这个代价函数,为了拟合出参数,要试图找尽量让 J ( θ ) J\left( \theta \right) J(θ) 取得最小值的参数 θ \theta θ

如果我们给出一个新的样本,假如某个特征 x x x,我们可以用拟合训练样本的参数 θ \theta θ,来输出对假设的预测。另外,我们假设的输出,实际上就是这个概率值: p ( y = 1 ∣ x ; θ ) p(y=1|x;\theta) p(y=1x;θ),就是关于 x x x θ \theta θ 为参数, y = 1 y=1 y=1 的概率,可以认为我们的假设就是估计 y = 1 y=1 y=1 的概率,所以,接下来就是弄清楚如何最大限度地最小化代价函数 J ( θ ) J\left( \theta \right) J(θ)

最小化代价函数的方法,是使用梯度下降法(gradient descent)。这是我们的代价函数:
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=-\frac{1}{m}\sum\limits_{i=1}^{m}{[{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

如果我们要最小化这个关于 θ \theta θ 的函数值,通常采用梯度下降法,反复更新每个参数,用这个式子来更新,就是用它自己减去学习率 α \alpha α 乘以后面的微分项。求导后得到:
吴恩达机器学习笔记-01_第38张图片如果你计算一下的话,你会得到这个等式:
θ j : = θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) {\theta_j}:={\theta_j}-\alpha \frac{1}{m}\sum\limits_{i=1}^{m}{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}}){x_{j}}^{(i)}} θj:=θjαm1i=1m(hθ(x(i))y(i))xj(i)
我把它写在这里,将后面这个式子,在 i = 1 i=1 i=1 m m m 上求和,其实就是预测误差乘以 x j ( i ) x_j^{(i)} xj(i) ,所以你把这个偏导数项 ∂ ∂ θ j J ( θ ) \frac{\partial }{\partial {\theta_j}}J\left( \theta \right) θjJ(θ)放回到原来式子这里,我们就可以将梯度下降算法写作如下形式:
θ j : = θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) {\theta_j}:={\theta_j}-\alpha \frac{1}{m}\sum\limits_{i=1}^{m}{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}}){x_{j}}^{(i)}} θj:=θjαm1i=1m(hθ(x(i))y(i))xj(i)

所以,如果有 n n n 个特征,也就是说:,参数向量 θ \theta θ 包括 θ 0 {\theta_{0}} θ0 θ 1 {\theta_{1}} θ1 θ 2 {\theta_{2}} θ2 一直到 θ n {\theta_{n}} θn,那么就需要用这个式子:
θ j : = θ j − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) {\theta_j}:={\theta_j}-\alpha \frac{1}{m}\sum\limits_{i=1}^{m}{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}}){{x}_{j}}^{(i)}} θj:=θjαm1i=1m(hθ(x(i))y(i))xj(i)来同时更新所有 θ \theta θ 的值。
现在,如果你把这个更新规则和我们之前用在线性回归上的进行比较的话,你会惊讶地发现,这个式子正是我们用来做线性回归梯度下降的。

那么,线性回归和逻辑回归是同一个算法吗?要回答这个问题,我们要观察逻辑回归看看发生了哪些变化。实际上,假设的定义发生了变化。

对于线性回归假设函数:

h θ ( x ) = θ T X = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n {h_\theta}\left( x \right)={\theta^T}X={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0x0+θ1x1+θ2x2+...+θnxn

而现在逻辑函数假设函数:

h θ ( x ) = 1 1 + e − θ T X {h_\theta}\left( x \right)=\frac{1}{1+{{e}^{-{\theta^T}X}}} hθ(x)=1+eθTX1

因此,即使更新参数的规则看起来基本相同,但由于假设的定义发生了变化,所以逻辑函数的梯度下降,跟线性回归的梯度下降实际上是两个完全不同的东西。

当使用梯度下降法来实现逻辑回归时,我们有这些不同的参数 θ \theta θ,就是 θ 0 {\theta_{0}} θ0 θ 1 {\theta_{1}} θ1 θ 2 {\theta_{2}} θ2 一直到 θ n {\theta_{n}} θn,我们需要用这个表达式来更新这些参数。我们还可以使用 for循环来更新这些参数值,用 for i=1 to n,或者 for i=1 to n+1。当然,不用 for循环也是可以的,理想情况下,更提倡使用向量化的实现,可以把所有这些 n n n个参数同时更新。

最后还有一点,我们之前在谈线性回归时讲到的特征缩放,我们看到了特征缩放是如何提高梯度下降的收敛速度的,这个特征缩放的方法,也适用于逻辑回归。如果你的特征范围差距很大的话,那么应用特征缩放的方法,同样也可以让逻辑回归中,梯度下降收敛更快。

3.6 多类别分类:一对多

在本次小节中,将学习如何使用逻辑回归 (logistic regression)来解决多类别分类问题,具体来说,是"一对多" (one-vs-all) 的分类算法。

先看这样一些例子。

第一个例子:假如说你现在需要一个学习算法能自动地将邮件归类到不同的文件夹里,或者说可以自动地加上标签,那么,你也许需要一些不同的文件夹,或者不同的标签来完成这件事,来区分开来自工作的邮件、来自朋友的邮件、来自家人的邮件或者是有关兴趣爱好的邮件,那么,我们就有了这样一个分类问题:其类别有四个,分别用 y = 1 y=1 y=1 y = 2 y=2 y=2 y = 3 y=3 y=3 y = 4 y=4 y=4 来代表。

第二个例子是有关药物诊断的,如果一个病人因为鼻塞来到你的诊所,他可能并没有生病,用 y = 1 y=1 y=1 这个类别来代表;或者患了感冒,用 y = 2 y=2 y=2 来代表;或者得了流感用 y = 3 y=3 y=3来代表。

第三个例子:如果你正在做有关天气的机器学习分类问题,那么你可能想要区分哪些天是晴天、多云、雨天、或者下雪天,对上述所有的例子, y y y 可以取一个很小的数值,一个相对"谨慎"的数值,比如1 到3、1到4或者其它数值,以上说的都是多类分类问题,顺便一提的是,对于下标是0 1 2 3,还是 1 2 3 4 都不重要,根据个人喜好,其实怎样标注都不会影响最后的结果。

对于二元分类和多类分类问题,数据集可能如下图所示:

吴恩达机器学习笔记-01_第39张图片我们使用3种不同的符号来代表3个类别,问题就是给出3个类型的数据集,我们如何得到一个学习算法来进行分类呢?

下面将介绍如何进行一对多的分类工作,有时这个方法也被称为"一对余"方法。吴恩达机器学习笔记-01_第40张图片这里的三角形是正样本,而圆形代表负样本。可以这样想,设置三角形的值为1,圆形的值为0,下面我们来训练一个标准的逻辑回归分类器,这样就得到一个正边界。

为了能实现这样的转变,我们将多个类中的一个类标记为正向类( y = 1 y=1 y=1),然后将其他所有类都标记为负向类,这个模型记作 h θ ( 1 ) ( x ) h_\theta^{\left( 1 \right)}\left( x \right) hθ(1)(x)。接着,类似地第我们选择另一个类标记为正向类( y = 2 y=2 y=2),再将其它类都标记为负向类,将这个模型记作 h θ ( 2 ) ( x ) h_\theta^{\left( 2 \right)}\left( x \right) hθ(2)(x),依此类推。
最后我们得到一系列的模型简记为: h θ ( i ) ( x ) = p ( y = i ∣ x ; θ ) h_\theta^{\left( i \right)}\left( x \right)=p\left( y=i|x;\theta \right) hθ(i)(x)=p(y=ix;θ)其中: i = ( 1 , 2 , 3.... k ) i=\left( 1,2,3....k \right) i=(1,2,3....k)

最后,在我们需要做预测时,将所有的分类机都运行一遍,然后对每一个输入变量,都选择最高可能性的输出变量。

总之,我们已经把要做的做完了,现在要做的就是训练这个逻辑回归分类器: h θ ( i ) ( x ) h_\theta^{\left( i \right)}\left( x \right) hθ(i)(x), 其中 i i i 对应每一个可能的 y = i y=i y=i,最后,为了做出预测,输入一个新的 x x x 值,就是在三个分类器里面输入 x x x,然后选择一个让 h θ ( i ) ( x ) h_\theta^{\left( i \right)}\left( x \right) hθ(i)(x) 最大的 i i i,即 max ⁡ i   h θ ( i ) ( x ) \mathop{\max}\limits_i\,h_\theta^{\left( i \right)}\left( x \right) imaxhθ(i)(x)

现在知道了基本的挑选分类器的方法,选择出哪一个分类器是可信度最高效果最好的,那么就可认为得到一个正确的分类,无论 i i i值是多少,我们都有最高的概率值,我们预测的 y y y 就是那个值。这就是多类别分类问题,以及一对多的方法,通过这个小方法,就可以将逻辑回归分类器用在多类分类的问题上。

四、正则化(Regularization)

4.1 过拟合问题

到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差。

在本小节中,将了解什么是过度拟合问题,并且在此之后接下来的几个小节中,会学习一种称为正则化(regularization)的技术,它可以改善过度拟合问题。

如果我们有非常多的特征,通过学习算法得到的假设也许能够非常好地适应训练集(代价函数可能几乎为0),但是可能会无法推广到新的数据。

下图是一个回归问题的例子:吴恩达机器学习笔记-01_第41张图片第一个模型是一个线性模型,欠拟合,不能很好地适应训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给出一个新的值使之预测,它将表现的很差,这就是过拟合,虽然能非常好地适应训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。

分类问题中也存在这样的问题:吴恩达机器学习笔记-01_第42张图片

就以多项式理解, x x x 的次数越高,拟合的越好,但相应的预测的能力就可能变差。

问题是,如果我们发现了过拟合问题,应该如何处理?

  1. 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(例如PCA

  2. 正则化。 保留所有的特征,但是减少参数的大小(magnitude)。

4.2 代价函数

上面的回归问题中如果我们的模型是:

h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 + θ 3 x 3 3 + θ 4 x 4 4 {h_\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}+{\theta_{3}}{x_{3}^3}+{\theta_{4}}{x_{4}^4} hθ(x)=θ0+θ1x1+θ2x22+θ3x33+θ4x44

我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于0的话,我们就能很好的拟合了。

所以我们要做的就是在一定程度上减小这些参数 θ \theta θ 的值,这就是正则化的基本方法。我们决定要减少 θ 3 {\theta_{3}} θ3 θ 4 {\theta_{4}} θ4 的大小,就是要修改代价函数,为其中的 θ 3 {\theta_{3}} θ3 θ 4 {\theta_{4}} θ4 设置一点惩罚。这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选择较小一些的 θ 3 {\theta_{3}} θ3 θ 4 {\theta_{4}} θ4

修改后的代价函数如下: min ⁡ θ   1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + 1000 θ 3 2 + 10000 θ 4 2 ] \underset{\theta }{\mathop{\min }}\,\frac{1}{2m}[\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}+1000\theta _{3}^{2}+10000\theta _{4}^{2}]} θmin2m1[i=1m(hθ(x(i))y(i))2+1000θ32+10000θ42]

通过这样的代价函数选择出的 θ 3 {\theta_{3}} θ3 θ 4 {\theta_{4}} θ4 对预测结果的影响就比之前要小许多。假如我们有非常多的特征,但是并不知道其中哪些特征需要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度,这样便能得到一个较为简单的能防止过拟合问题的假设: J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] J\left( \theta \right)=\frac{1}{2m}[\sum\limits_{i=1}^{m}{{{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})}^{2}}+\lambda \sum\limits_{j=1}^{n}{\theta_{j}^{2}}]} J(θ)=2m1[i=1m(hθ(x(i))y(i))2+λj=1nθj2]

其中 λ \lambda λ 又称为正则化参数(Regularization Parameter)。 注:根据惯例,我们不对 θ 0 {\theta_{0}} θ0 进行惩罚。经过正则化处理的模型与原模型的可能对比如下图所示:
吴恩达机器学习笔记-01_第43张图片
如果选择的正则化参数 λ \lambda λ 过大,则会把所有的参数都最小化了,导致模型变成 h θ ( x ) = θ 0 {h_\theta}\left( x \right)={\theta_{0}} hθ(x)=θ0,也就是上图中红色直线所示的情况,造成欠拟合。

那为什么增加的一项 λ = ∑ j = 1 n θ j 2 \lambda =\sum\limits_{j=1}^{n}{\theta_j^{2}} λ=j=1nθj2 可以使 θ \theta θ 的值减小呢?
因为如果我们令 λ \lambda λ 的值很大的话,为了使Cost Function 尽可能的小,所有的 $\theta $ 的值(不包括 θ 0 {\theta_{0}} θ0)都会在一定程度上减小。但若 λ \lambda λ 的值太大了,那么 θ \theta θ(不包括 θ 0 {\theta_{0}} θ0)都会趋近于0,这样我们所得到的只能是一条平行于 x x x轴的直线。

所以对于正则化,我们要取一个合理的 λ \lambda λ 的值,这样才能更好的应用正则化。

4.3 正则化线性回归

对于线性回归的求解,我们之前推导了两种学习算法:一种基于梯度下降,一种基于正规方程。

正则化线性回归的代价函数为:

J ( θ ) = 1 2 m ∑ i = 1 m [ ( ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ) ] J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{[({{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})}^{2}}+\lambda \sum\limits_{j=1}^{n}{\theta _{j}^{2}})]} J(θ)=2m1i=1m[((hθ(x(i))y(i))2+λj=1nθj2)]

如果我们要使用梯度下降法令这个代价函数最小化,因为我们未对 θ 0 \theta_0 θ0进行正则化,所以梯度下降算法将分两种情形:

R e p e a t Repeat Repeat u n t i l until until c o n v e r g e n c e convergence convergence{

θ 0 : = θ 0 − a 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) ) {\theta_0}:={\theta_0}-a\frac{1}{m}\sum\limits_{i=1}^{m}{(({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})x_{0}^{(i)}}) θ0:=θ0am1i=1m((hθ(x(i))y(i))x0(i))

θ j : = θ j − a [ 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m θ j ] {\theta_j}:={\theta_j}-a[\frac{1}{m}\sum\limits_{i=1}^{m}{(({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})x_{j}^{\left( i \right)}}+\frac{\lambda }{m}{\theta_j}] θj:=θja[m1i=1m((hθ(x(i))y(i))xj(i)+mλθj]

f o r for for j = 1 , 2 , . . . n j=1,2,...n j=1,2,...n

}

对上面的算法中 j = 1 , 2 , . . . , n j=1,2,...,n j=1,2,...,n 时的更新式子进行调整可得:

θ j : = θ j ( 1 − a λ m ) − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) {\theta_j}:={\theta_j}(1-a\frac{\lambda }{m})-a\frac{1}{m}\sum\limits_{i=1}^{m}{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})x_{j}^{\left( i \right)}} θj:=θj(1amλ)am1i=1m(hθ(x(i))y(i))xj(i)

可以看出,正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令 θ \theta θ 值减少了一个额外的值。

我们同样也可以利用正规方程来求解正则化线性回归模型,方法如下所示:在这里插入图片描述图中的矩阵尺寸为 ( n + 1 ) ∗ ( n + 1 ) (n+1)*(n+1) (n+1)(n+1)

4.4 正则化的逻辑回归模型

针对逻辑回归问题,也是使用梯度下降法来优化代价函数 J ( θ ) J\left( \theta \right) J(θ)
吴恩达机器学习笔记-01_第44张图片
对于逻辑回归,我们也给代价函数增加一个正则化的表达式,得到代价函数:
J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]}+\frac{\lambda }{2m}\sum\limits_{j=1}^{n}{\theta _{j}^{2}} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]+2mλj=1nθj2

将带有正则项的逻辑回归的代价函数带入梯度下降算法中,通过计算可得到与线性回归同样的参数更新表达式,但是要知道 h θ ( x ) = g ( θ T X ) ​ {h_\theta}\left( x \right)=g\left( {\theta^T}X \right)​ hθ(x)=g(θTX),本质上与线性回归不同。

Python代码:

import numpy as np

def costReg(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    first = np.multiply(-y, np.log(sigmoid(X*theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X*theta.T)))
    reg = (learningRate / (2 * len(X))* np.sum(np.power(theta[:,1:theta.shape[1]],2))
    return np.sum(first - second) / (len(X)) + reg

注意:

  1. 虽然正则化的逻辑回归中的梯度下降和正则化的线性回归中的表达式看起来一样,但由于两者的 h θ ( x ) {h_\theta}\left( x \right) hθ(x)不同所以还是有很大差别。

  2. θ 0 {\theta_{0}} θ0 不参与其中的任何一个正则化。

你可能感兴趣的:(机器学习,机器学习,算法,python)